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Abstract 

Forecasts of hydrological information are vital for many of society’s functions. 

Availability of water is a requirement for any civilization, and this necessitates 

quantitative estimates of water for effective resource management. The research in this 

dissertation will focus on the forecasting of hydrological quantities, with emphasis on 

times of anomalously low water availability, commonly referred to as droughts. Of 

particular focus is the quantification of uncertainty in hydrological forecasts, and the 

factors that affect that uncertainty. With this focus, Bayesian methods, including 

ensemble data assimilation and multi-model combinations, are utilized to develop a 

probabilistic forecasting system. This system is applied to the upper Colorado River 

Basin for water supply and drought forecast analysis. 

 This dissertation examines further advancements related to the identification of 

drought intensity. Due to the reliance of drought forecasting on measures of the 

magnitude of a drought event, it is imperative that these measures be highly accurate. In 

order to quantify drought intensity, hydrologists typically use statistical indices, which 

place observed hydrological deficiencies within the context of historical climate. 

Although such indices are a convenient framework for understanding the intensity of a 

drought event, they have obstacles related to non-stationary climate, and non-uniformly 

distributed input variables. This dissertation discusses these shortcomings, demonstrates 

some errors that conventional indices may lead to, and then proposes a movement 

towards physically-based indices to overcome these issues. 
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 A final advancement in this dissertation is an examination of the sensitivity of 

hydrological forecasts to initial conditions. Although this has been performed in many 

recent studies, the experiment here takes a more detailed approach. Rather than 

determining the lead time at which meteorological forcing becomes dominant with 

respect to initial conditions, this study quantifies the lead time at which the forecast 

becomes entirely insensitive to initial conditions, and estimating the rate at which the 

forecast loses sensitivity to initial conditions. A primary goal with this study is to 

examine the recovery of drought, which is related to the loss of sensitivity to below 

average initial moisture conditions over time. Through this analysis, it is found that 

forecasts are sensitive to initial conditions at greater lead times than previously thought, 

which has repercussions for development of forecast systems. 
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1. Forecasting in Hydrological Applications 

1.1 Forecasting in Environmental Systems 

Forecasts are a vital aspect of the management of many environmental systems 

(Beck, 1987; Clark et al., 2001; Levine and D’Antonio, 2003; Shukla, 1998). From 

weather to biological production, society relies on forecasting from various agencies, 

consultancies and academic institutions to make decisions about how to manage 

resources (Bloemhof-Ruwaard et al., 1995; Katz and Murphy, 1997; Stern and Easterling, 

1999). While the applications and sources of such forecasts are incredibly diverse, all 

require the formulation of the forecast problem with a systems approach, commonly 

based on Reynolds Transport Theorem (Hutter and Jöhnk, 2004). Primarily these systems 

are derived based on an understanding that certain extensive properties are conserved, 

typically mass, momentum and energy in most systems of interest. Based on these 

conservation laws, one can generalize the forecasting problems to have components 

originating from three categories: Initial conditions, boundary conditions and processes 

(Araújo and New, 2007). Initial conditions are the states, or storages, of extensive 

properties within a system at some initial forecast time, processes are the general physical 

principles that control the dynamics of the system, and boundary conditions are the 

physical constraints acting on the system states/processes. Assuming that each of these 

elements can be correctly estimated, accurate forecasting is possible for any system of 

interest. 
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1.1.1 Boundary Conditions 

Boundary conditions explain the physical constraints placed on the states and 

processes associated with an environmental system. For these conditions, boundaries 

determine how the universal processes interact within the specific environmental setting 

of interest. Boundary conditions may be either static or dynamic. For any fully enclosed 

system, all boundary conditions will be static. Given this scenario, the state of the system 

is dynamic in time, but can be determined based solely on the evolution of the physical 

processes in the system over the designated time. Alternatively, any partially enclosed 

system will have some dynamic boundary conditions, which reflect the effects of other 

systems on the system of interest. Since any environmental system cannot be feasibly 

modeled in its entirety, all practical scenarios will have some combination of static and 

dynamic boundary conditions. These conditions provide some constraint on the system, 

but will be derived in very different ways. Static boundary conditions rely on some a 

priori knowledge of the system, or estimation through some form of calibration. One may 

theorize that with information about all processes and states of a system, static boundary 

conditions may be estimated with a sufficiently long time series of observation through 

inverse modeling (Carrera et al., 2005). As for dynamic parameters, one will be required 

to have some knowledge of the interacting system, or some observation of that interacting 

system. Although one could attempt to estimate the dynamic boundary conditions 

through inverse modeling, this should be avoided in the majority of cases as the problem 

becomes highly ill-posed (Renard et al., 2010). 
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1.1.2 Initial Conditions 

Initial conditions provide a starting point for trajectories in changes of the system 

properties. Given a specific state of the system (e.g. storage of mass, momentum, or 

energy), the system properties will deviate from those conditions in time. Although the 

system moves from this initial state, making the system increasingly insensitive to initial 

conditions, many systems will remain sensitive to initial conditions for a significant 

period (Rabier et al., 1996; Rosati et al., 1997). In any real forecasting scenario, one will 

need to estimate these initial conditions with sufficient accuracy to develop a reasonable 

forecast of the system at a later date, or to estimate the total change in the system over 

time. These initial conditions may be quantified in two ways. First, observations of the 

system may be available to sufficiently characterize the system states. Second, and 

primarily for the particular case of known dynamic boundary conditions, one may utilize 

a model to estimate the initial conditions. The former is generally a preferred scenario, as 

this only has error in the observation process, as opposed to the observation and 

simulation errors associated with the latter, yet one can rarely observe the state of an 

environmental system sufficiently for initialization. 

1.1.3 Processes 

Processes are the general physical laws that determine the changes of extensive 

properties throughout a system. Characterization of these processes is a great challenge in 

any moderately complex system, due to a general inability to completely observe such a 

system. Although physical reasoning and experimentation may provide avenues to 

explain the behavior of a system, the interactions between initial and boundary conditions 
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at feasible spatial and temporal scales for discretized modeling are difficult to unravel. 

Characterization of these processes is performed through two approaches. First, the 

processes may be approached from laboratory scale experiments, where the foundational 

principles of a process may be identified in completely controlled scenario (e.g. Darcy 

flow in saturated porous media). Although such experimentation provides strong 

evidence for some system behaviors, the process of scaling these principles up to any 

useful system is bound to have errors. Alternatively, one may approach the problem from 

conservation laws, which provide information about the system as a whole, and progress 

to the smaller scale. In any practical scenario, a forecaster will perform some 

combination of these methodologies, using physical reasoning when possible, and 

controlling the system with the top-down approach for applicability to the desired scale. 

1.2 Hydrological Forecasting 

Hydrological forecasts are of high importance to society, due to the dependency 

of all aspects of society’s functions on the availability of water, and the hazards of water 

in excess. Humans rely on water for a myriad of issues, not the least being requisite 

consumption for survival. Agriculture, industry, power generation, transportation, 

environmental stewardship, wildfire prevention and flood control are all examples of 

applications that require knowledge of water flows/storages at varying spatiotemporal 

scales. Such a demand for accurate estimation of hydrological states and fluxes requires 

the application of the general forecasting approach to the specific hydrological setting. 

Within a hydrological system, models are generally based on conservation of mass and 

energy, with conservation of momentum being relatively unimportant at scales of 
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interest. The simplest models in hydrology are highly conceptualized representations of 

the water balance (Boyle et al., 2000), but increasingly physically-based models are being 

developed to account for both the water and energy balance (Gao et al., 2010). Although 

the primary foci in hydrological forecasting are states and fluxes of water, complete 

modeling requires accounting for energy within the system, due to the phase changes of 

water experienced above and below the earth’s surface. 

Hydrological forecasting systems can generally be described through the state-

space framework, as described in equation (1). This framework is entirely consistent with 

the general environmental forecasting framework previously presented, and assumes that 

the model follows the first order Markovian criteria, with all necessary information about 

the system being contained in the previous states. 

 ,,1 ttt uxfx                  (1) 

In equation (1), xt represents the state vector at time t, which is generated by the forward 

model operator (f(.)). This model represents the hydrologic processes, and therefore 

requires initial states (xt-1), meteorological forcing data (dynamic boundary conditions) 

for the current time (ut), and model parameters (static boundary conditions) (θ) to project 

forward in time. Often in hydrological forecasting, a subsequent model is required to 

translate these model states into the prediction or observation space. A typical example is 

applying a hydrological/hydraulic routing model to translate land surface water fluxes to 

flow at a watershed outlet. This model is referred to as an observational operator, and is 

represented in equation (2). 

 ,tt xhy 
  

               (2)
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In equation (2), yt represents the forecasted value, based on some extraneous process h(), 

static boundary conditions for that process (α), and the states at the current time step.  

1.2.1 Forcing and Parameters as Boundary Conditions 

Definition of boundary conditions in hydrological models is complex, owing to 

the nature of conceptualized models, and the interactions of the land surface with the 

atmosphere. Within hydrological models, these conditions are typically classified into 

parameters and forcing. Parameters are the boundary conditions which control the 

physical processes, which vary spatially, but not in time. These parameters affect the 

processes in the model, and therefore may relate to either physical or conceptual 

conditions, with respect to the given location. Examples of physical parameters may be 

vegetation information, soil properties, slope, aspect and elevation, and examples of 

conceptual parameters may be representative water storage tank maximums (Burnash et 

al., 1973), infiltration exponents (Liang et al., 1994), snow melt factor (Anderson, 1973), 

and storage tank outflow rate (Boyle et al., 2000). In order to characterize these 

parameters, practitioners use various forms of observations, expert knowledge, and 

inverse modeling. Forcing data are mass and energy inputs to the region of interest, 

determined by atmospheric processes. In attempts to avoid modeling the complex 

interactions of the land surface and atmosphere, hydrological modelers/forecasters 

typically rely on meteorological observations, for hindcasting experiments, and forecasts 

generated with by meteorologists, to characterize the dynamic boundary conditions. 

Overall the definition of boundary conditions in hydrological models becomes quite 
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complex, and therefore requires a combination of observations, calibration, collaboration 

with meteorologists, and expert knowledge to define. 

1.2.2 Hydrological Initial Conditions 

Characterization of initial conditions is typically performed through model 

simulations, commonly referred to as a “spin-up”, where historical observations of the 

forcing data are available up to an initial forecast date. The spin-up methodology is 

popular because nearly all hydrological models have states that are either conceptual or 

unobservable by currently available methods. These initial conditions primarily include 

snow water equivalent (SWE), soil moisture content, groundwater levels, and 

temperatures of the snow/soil. Although these variables have physical values, models 

often conceptualize them (e.g. theoretical storage tank representing the soil matrix), or 

require spatial averages that are not readily observed. Through the spin-up methodology, 

hydrological model simulations are performed up to some initial forecast time. At the 

initial forecast time, all states considered by the model are saved, and become a starting 

point for hydrological simulations into the future. 

1.2.3 Hydrological Model Processes 

Processes at the land surface are poorly understood, and therefore are often of 

conceptual nature or extrapolated from point-scale/laboratory studies. Owing to the 

complexities of the land surface structure, land-atmosphere exchanges and environmental 

interactions, it becomes nearly impossible to accurately observe hydrological phenomena 

at desired scales for forecasting. In order to overcome these problems, hydrologists either 

develop a conceptual understanding of the movement of water through a watershed, then 
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develop an abstract representation of the watershed that is simple enough to simulate (i.e. 

leaky bucket model), or apply information gained from controlled experiments to the 

scale of interest (i.e. Darcy flow through soil). Although modeling of the hydrologic 

cycle requires major assumptions and abstractions, hydrologists rely on the knowledge 

that mass and energy are conserved to ensure some consistency between model structure 

and the real world. In addition, the reliance on conservation laws provides hydrological 

modelers with a basis for model verification (i.e. minimization of bias). 

1.3 Water Supply Forecasting 

Water supply forecasting broadly describes the quantification of available water 

for some use over a specified time-scale. Applications of these forecasts can fall into a 

number of categories including reservoir management for consumptive use, irrigation of 

cropland, planning of hydropower generation schedules and ensuring availability of 

environmental water. Within the context these applications, supply forecasts range from 

monthly to multi-year time-scales (Wood and Werner, 2011), with demand for specific 

time-scales being determined by stakeholders and water managers (Werner et al., 2013). 

Within the group of forecast users, a diverse group of farmers, reservoir operators, 

municipal planners and power supply managers provide competing interests which 

forecasting agencies attempt to satisfy. Forecasting agencies, including the National 

Weather Service River Forecast Centers (NWSRFC) and the Natural Resource 

Conservation Service, and academic groups have developed a range of forecasting 

techniques to meet user needs (Arumugam et al., 2014). These techniques may take the 

form of either statistical or dynamic forecasts (Day, 1985). Statistical forecasts simplify 
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the generalized forecasting system above, and focus directly on correlations between 

certain environmental information and the quantity of interest. Such forecasting 

represents the most simplistic of frameworks, and the basis for the original water supply 

forecasts. Due to a reliance on stationary climate, and a perception that the potential skill 

of statistical forecasts has an upper limit, forecasters are moving to dynamic frameworks. 

Through a movement to dynamic, simulation based, forecasts, an understanding of the 

physics may be leveraged, thus reducing the reliance on climate stationarity, and allowing 

for continual improvement as research of physical hydrology progresses. 

Statistical forecasts of volumetric runoff from the land surface are built on a 

relationship between one or more environmental variables and streamflow volumes. 

Some popular sources of information are snow observations (Risley et al., 2005), sea 

surface temperature (Aziz et al., 2010) and geopotential heights (Grantz et al., 2005). 

Such relationships are modeled with regression based techniques (Garen, 1992; 

Moradkhani and Meier, 2010; Pagano et al., 2004) or artificial neural networks (Maier et 

al., 2010). Within the realm of regression analysis, it has become common to include 

multiple indicators, which necessitates the removal of variable correlations. Principal 

component analysis (Garen, 1992) has become quite popular for removing these 

correlations (e.g. Olden and Poff, 2003; Piechota et al., 1997; Regonda et al., 2006), but 

more recent developments are available (i.e. Moradkhani and Meier, 2010). Although 

statistical methods are quite popular for water supply forecasting, these techniques have 

been questioned by researchers. Due to a lack of physical realism in the statistical 

models, many researchers have hypothesized that these methods have a potential skill 
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that is lower than that of dynamic forecast methods, and further argued that these 

methods are questionable in light of the finding that climate is non-stationary. This 

dissertation follows the thought that striving for additionally physically-based forecast 

systems will yield improving results moving forward, and therefore focuses on dynamic 

forecasting techniques in an attempt to gain information from physical reasoning, and 

increase the reliability dynamic forecast systems for use under future climatic conditions. 

Dynamic forecasting requires the use of a model to simulate future hydrologic 

processes. The general framework for such a system was laid out earlier in this chapter, 

and may be observed in both operational and research based forecasting techniques. A 

prominent example of this is the Ensemble Streamflow Prediction (ESP) method used by 

the NWSRFCs (Day, 1985). As described earlier, dynamic forecasting of streamflow 

requires the estimation of initial model states, boundary conditions and future 

hydrological processes. In regards to the specific case of water supply forecasting, the 

stationary boundary conditions, referred to as model parameters by hydrologists, are 

typically treated as part of the process model, and calibrated during some period of time 

prior to the forecast. After calibration, a spin-up is performed with the model to estimate 

initial states, and information about future climate, typically precipitation and 

temperature data, is used to drive the model forward in time. In order to improve forecast 

accuracy, at least one of these forecast components must be improved. Through improved 

identification of the initial conditions, boundary conditions and/or hydrologic processes, 

the accuracy of the final forecast product will become more accurate. 
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1.4 Drought Forecasting 

Drought is a complex hydro-climatic phenomenon that remains poorly understood 

across various geophysical disciplines. Despite decades of research examining drought, 

scientists have failed to even reach a consensus on the definition of drought. In addition 

to being poorly understood, drought is also the costliest natural disaster (Cook et al., 

2007), accounting for 41.2% of the economic cost from all natural disasters in the US 

(Ross and Lott, 2003), and affects the largest population globally of any natural disaster 

(Wilhite, 2000). Such a combination of misunderstanding and danger has led researchers 

to focus on understanding drought processes (Mishra and Singh, 2011; Dai, 2011; Zargar 

et al., 2011), and improving methodologies to mitigate the devastating effects of 

droughts. Within this line of research, advancing our understanding of droughts is 

expected to lead to improved quantification and forecasting of drought events. 

Quantifying drought is typically performed through index based assessment, 

where the intensity of a drought is related to the magnitude of the index. The basis for the 

vast majority of the drought indices used in the scientific literature was forged nearly a 

half-century ago (Palmer, 1965). A landmark development, the Palmer Drought Severity 

Index (PDSI) gave researchers the ability to quantify drought in the context of historical 

information, thus providing an index that may be interpreted with respect to historical 

climate. Based on a record of past observations, the drought severity is related to 

historical probability of occurrence. By viewing the state of drought in a historical 

context, drought is characterized as a deviation from normal conditions, similar to the 

definition of meteorological drought by Wilhite (2000). This has led to wide ranging 
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applications of the PDSI for drought quantification, and further advancements of this 

index (i.e. Surface Water Supply Index). In a simpler fashion, Mckee et al., (1993) 

developed a Standardized Precipitation Index, under the assumption that droughts are 

primarily initiated by a lack of precipitation. This method of standardization follows 

Palmer (1965) to quantify drought conditions in relation to climatology, but demonstrated 

how this may be applied in a much simpler fashion to focus on a specific aspect of 

drought. Standardization of hydrological variables has become quite common for drought 

quantification, leading to the development of many drought indices, each with specific 

focus. Based on this drought quantification, mitigation measures may be enforced to 

reduce the impacts of a drought event. 

 Currently, most drought mitigation systems take a reactionary approach, placing 

water restrictions when a drought is observed, but developing forecast based mitigation 

systems will more effectively reduce the overall cost of drought (Jaeger et al., 2013; 

Pozzi et al., 2013). In addition, moving towards proactive drought management is 

essential to the future functioning of society in light of recent climate change studies 

(Dai, 2011). Operational forecasts of drought are produced regularly by the National 

Oceanic and Atmospheric Administration Climate Prediction Center and the National 

Drought Monitor, but research forecasts are also available (e.g. 

http://hydrology.princeton.edu/forecast/current.php). In addition, new drought forecasting 

methodologies are developing, which forecast different types of droughts, and drought 

characteristics including onset, intensity and duration (Arshad et al., 2012; Kim and 

Valdés, 2003; Yuan and Wood, 2013). These forecast products are essential in driving 

http://hydrology.princeton.edu/forecast/current.php
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drought mitigation decisions, but advances are still needed to improve management. 

Similar to water supply forecasting, these advances may be expected to come from 

improvements in the quantification initial conditions, boundary conditions and 

hydrological processes that lead to drought conditions. 
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2 Framing Forecasts from a Probabilistic Perspective 

Forecasting of hydrologic variables may be formulated according to the topics 

covered in Chapter 1, but this framework assumes perfect knowledge of all 

hydrologically relevant aspects of a region. In any real watershed or region, the 

spatiotemporal dynamics of hydrological states and processes lead to unavoidable 

uncertainties. The hydrological cycle cannot be completely observed, nor can it be 

exactly modeled. Therefore, a forecaster is incapable of perfectly forecasting the 

phenomena of interest. In order to move forward, a forecaster must acknowledge that all 

forecasting systems are imperfect, and therefore attempt to quantify the uncertainty in a 

given forecast. 

Forecast uncertainty results from each of the forecasting components. With the 

knowledge that any forecast can be developed with information about initial states, 

boundary conditions and processes, and that each of these components will contain some 

uncertainties, a robust approach for quantifying that forecast uncertainty is through a 

bottom up framework, examining each forecast component separately. Initial condition 

uncertainty arises from the inability to accurately observe land surface states. Although a 

range of advanced observation systems are available, including in-situ and remotely 

sensing platforms, the spatio-temporal distribution of the predominant hydrological 

variables is too complex to completely resolve. Alternatively, the forcing, or dynamic 

boundary conditions, must be gathered from another model to perform simulations into 

the future. These models may be either atmospheric or statistical in nature, and each type 

of model will carry significant uncertainties. Model parameters, or static boundary 
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conditions, may be observed in the case of physically-based model representations, but 

most impactful parameters in hydrological modeling are unobservable, or conceptual, and 

therefore require some form of inverse modeling. This inverse modeling will carry 

uncertainties as the parameters are not perfectly identifiable, due to incomplete 

information content of the observations, suggesting the presence of parameter error in 

optimization schemes (Beven and Binley, 1992). Finally, processes are never completely 

known, and if they were completely known, perfect simulation of those processes would 

likely be infeasible with currently available computing systems. This is referred to as 

model structural error, and is likely the most complex uncertainty to address. In order to 

quantify these uncertainties, methods are taken from probability theory to estimate the 

certainty of given forecasted outcomes. 

2.1 Quantifying uncertainties 

2.1.1 Probabilistic Forecasting Methods 

Quantifying uncertainty of any phenomena requires the identification of potential 

estimation errors from the probabilistic perspective. This perspective requires the 

treatment of some variable(s) of interest as random, being drawn from some probability 

distribution. At this point, it should be clarified that this dissertation takes the position 

that hydrological variables are deterministic, and therefore theoretically have potential to 

be forecasted exactly, but any practical forecaster must treat them as stochastic to 

represent their incomplete knowledge of the desired information. In this regard, 

probability theory is relied upon to quantify a forecaster’s ignorance, and is not a 

suggestion that hydrological processes are truly random. In order to frame a forecast from 
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the probabilistic perspective, a forecaster will typically need to assume parametric 

Probability Distribution Functions (PDF) to represent the uncertainties of interest 

(DeChant and Moradkhani, 2014). At all levels of hydrological forecasting, uncertainties 

may be represented by some PDF. Following the previously described state-space 

framework, probabilistic modeling of forecasts may be described, as shown in equations 

(3) and (4).  

          tttt ppupxpfxp    ,,1
             (3) 

        ttt ppxphyp   ,               (4)
  

In the above equations, all variables are represented as probability distributions, as noted 

with p() . Further, each representative model has a time-dependent error term added to it, 

with ωt representing the forward model error, and νt representing the observational model 

error. These terms represent a time-varying model error, each of which comes from a 

PDF representing a forecaster’s uncertainty about each model’s structure.
 
Due to the 

variety of different uncertainties in this system, it is common to follow the Central Limit 

Theorem, and therefore assume the overall forecast PDF should approach Gaussianity 

(Gupta et al., 2009; Reichle et al., 2002; Schoups and Vrugt, 2010). Although this may 

seem to be a reasonable approximation for the generalized case, the zero boundary 

condition (no negative mass) for many hydrological variables motivates the use of 

positive PDFs (Log-Normal or Gamma distributions) (Jayawardena and Lai, 1994). 

Given the non-linear nature of hydrological models, combining PDFs representing 

different sources of uncertainty is quite challenging. Generally it is infeasible to perform 

this analytically, which necessitates the use of Monte Carlo simulations. This involves 
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simulation of the forecast density to develop an ensemble representation of the forecast 

PDF. Thus hydrological forecasters have increasingly moved towards ensemble 

forecasting methods for estimating forecast uncertainty, especially with the recent 

advances in high-performance computing to overcome the computational burden.
 

Ensemble prediction methods in the hydrological sciences are prevalent, both in 

research and operational applications. They are the basis for the operational ESP 

framework and the focus of the Hydrological Ensemble Prediction Experiment (HEPEX) 

(Schaake et al., 2007), which is a major research initiative. The extent of operational and 

research interest highlights the importance of continued study into ensemble forecast 

methods. In continuing this line of research, this dissertation examines the use of 

ensemble based forecasting for quantifying hydrologic uncertainty. Following equations 

(3) and (4), the forecasting problem can be shown in an ensemble framework through the 

state-space representation. 

  tiitititi uxfx ,,1,, ,,   
               (5) 

  tiititi xhy ,,, ,                   (6) 

In equations (5) and (6), each variable is indexed with i, indicating the specific member 

that value falls within the ensemble. At this point, the problem becomes sampling from 

the individual probability distributions, and then performing enough simulations to 

represent the forecast probability distribution. In order to sample each individual error 

source, one will need an error model for each variable. 

Model state error is entirely described within equation (3), with the hydrological 

model, parameter and forcing errors all contributing to state error. Forcing error requires 
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some direct error model (equation (7)), which will typically consist of sampling from a 

representative distribution. Note that in equation (7), the overline indicates an 

observed/estimated value, which has some unknown error. This distribution will vary 

depending on the quantity of interest. Similarly, model structural error will typically be 

sampled from a distribution, which is commonly treated as Gaussian, which may be 

supported by the argument that the complexities of the model calculations will satisfy the 

central limit theorem. It is acknowledged that the representativeness the normal 

distribution is a large assumption, but the examination of alternatives is outside the scope 

of this dissertation. In equations (8) and (9), η and κ represent multiplication factors to 

determine the variance of the forward model and observational operator, respectively. 

These factors treat structural errors as heteroschedastic, based on the assumption that 

errors likely grow as the forecast deviates from the zero boundary condition, and are 

therefore less constrained. An alternative to representing structural error is the use of 

multiple model ensembles (Clemen, 1989; Najafi et al., 2011). Through the simulation of 

multiple models, it is assumed that the uncertainty in hydrological processes will be 

implicitly quantified. Finally, parameter error becomes a much more challenging 

problem, as the parameter errors are intertwined with the data errors. In the hydrological 

literature, much focus has been placed on parameter error, which is typically estimated 

with a Bayesian approach (Moradkhani et al., 2012; Thyer et al., 2009). 

)(, tinputit uErru                  (7) 

 ),,*,0(~ ,1,, ititiit uxfN                 (8) 

 ),*,0(~ ,, itiit xhN                 (9) 
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2.2 Reducing Uncertainties 

2.2.1 Reducing State Uncertainty 

Reducing state uncertainty within hydrological sciences is necessary for improved 

forecasting, but this is a challenging task. In order to reduce state uncertainty, one must 

either improve upon their modeling system, or gain observations of the desired state 

which is more accurate than the model estimate. Although either of these avenues for 

improving model states may be reasonable in an extended timeline, as incremental 

advances in modeling and observing are expected, it is a better strategy to use 

information from both model simulations and observations to develop a theoretically 

better product. This methodology is broadly referred to as data assimilation (DA), and 

has become increasingly popular in hydrological sciences. Within the specific context of 

this dissertation, a class of DA techniques, referred to as ensemble DA, are highly 

appropriate. Similar to the use of ensemble methods in representing forecast uncertainty, 

ensemble DA allows for assimilation with highly non-linear models. By performing DA 

in an ensemble framework, state uncertainty is being both estimated and reduced 

simultaneously. Such quantification is highly desirable for the applications examined in 

this dissertation. 

A number of researchers have examined the use of ensemble DA methods for 

improving land surface state prediction (Andreadis and Lettenmaier, 2006; Clark et al., 

2008a; DeChant and Moradkhani, 2011a; De Lannoy et al., 2012; Liu et al., 2012; 

Margulis et al., 2002; Reichle et al., 2002) and examining the ability of stochastic states 

to estimate uncertainty reliably (DeChant and Moradkhani, 2012; Leisenring and 
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Moradkhani, 2011; Leisenring and Moradkhani, 2012; Liu and Gupta, 2007; Moradkhani 

et al., 2005a, b). The majority of these techniques rely on Bayes Theorem to sequentially 

reduce the uncertainties in ensemble predictions of state values, based on some observed 

information. Two primary techniques exist within the hydrological DA literature: the 

Ensemble Kalman Filter (EnKF) and the Particle Filter (PF). Of these techniques, the 

EnKF has seen the greatest use in hydrology, and has been shown to effectively reduce 

errors in the simulation of a range of variables. Although the EnKF is quite popular, this 

study utilizes the PF, as it has been shown to be a more robust estimator of hydrological 

uncertainty than the EnKF (DeChant and Moradkhani, 2012), which results from a 

reduced reliance on Guassian error structure, and greater applicability to highly non-

linear problems. More details on the PF are provided in Chapter 5. 

2.2.2 Reducing Model Uncertainty 

Reducing model simulation uncertainty has proven challenging since the 

development of the first simulation models. This point is evidenced by the lengthy 

discussion of model development philosophy and model error identification in the last 25 

years (e.g. Beven, 1989; Butts et al., 2004; Clark et al., 2008b; Jakeman and Hornberger, 

1993). The efficacy of different hydrological models and potential ways to improve their 

individual simulations are regularly discussed, both in the literature and at scientific 

conferences, yet a single optimal model structure cannot be identified. This has led to the 

development of a range of modeling systems. With the variety of models currently 

available in hydrology, and no clear optimal structure, it has become popular to address 

model structural uncertainty implicitly through multi-model ensembles (Bohn et al., 
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2010; Clemen, 1989; Regonda et al., 2006). By having a diverse set of model structures, a 

forecast is assumed to quantify the uncertainties related to each individual model. 

Further, one may reduce the error in a multi-model forecast with the use of some 

observed information. Similar to ensemble DA, Bayes Theorem may be applied to an 

ensemble of model simulations to reduce the uncertainty of that ensemble. This method 

relies on the calibration of model weights over a set time period, and then those weights 

are applied during a forecast period. Due to the ensemble basis of this forecasting system, 

and the ability to quantify/reduce model structural uncertainty, the use of Bayesian multi-

modeling is appropriate for use in this dissertation. 
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3 Dissertation Objectives 

A primary theme of this research is the pursuit of comprehensive accounting of 

uncertainty in hydrological forecasting. Such a goal is motivated by the assumption that 

total uncertainty can be reliably estimated, while avoiding unnecessary inflation of that 

uncertainty, through the proper representation of uncertainty in each forecasting 

component. Although examples of total error calibration are suggested in the literature 

(e.g., Montanari and Grossi, 2008), thus simplifying the uncertainty estimation problem, 

the non-linear relationship between different sources of uncertainty and the forecast value 

will likely create information loss in a posteriori uncertainty estimation (Renard et al., 

2010). A more prudent approach is a comprehensive methodology by individually 

treating each possible source of uncertainty (DeChant and Moradkhani, 2012; Kuczera et 

al., 2006; Moradkhani et al., 2012). Specifically, this comprehensive approach requires 

the treatment of each initial condition, boundary condition, and process with some 

estimated uncertainty variance. In the specific case of a hydrological model, this will be 

identified as four sources: Model states (initial conditions), meteorological forcing 

(dynamic boundary conditions), model parameters (static boundary conditions) and 

model structure (hydrologic processes). Recent work has shown that accounting for all 

four of these sources are essential for quantifying uncertainty in forecasts from 

conceptual hydrological models in the short-term (DeChant and Moradkhani, 2012; 

Moradkhani et al., 2012), but parameter uncertainty may be less significant at longer 

time-periods. Since the model is based on a conservation of mass and energy, and 

specific parameter values tend to focus on rates of energy and water fluxes, it is likely 
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that model structural uncertainty is dominant, in comparison to parameters, at the 

seasonal time scales of interest here. By assuming that model structural uncertainty are 

dominant in comparison to parameter uncertainty, the calibration process is simplified, 

and the parameter uncertainty is combined with structural uncertainty, which will be 

referred to as model uncertainty for clarity. Therefore this study will focus on the roles of 

initial state, forcing and model uncertainty for probabilistic forecasting. 

There are an increasing number of operational and research forecasts being cast in a 

probabilistic manner (Demargne et al., 2013; Madadgar et al., 2012; Yuan et al., 2013), 

yet none of these forecasts approach the uncertainty estimation problem 

comprehensively. Most of these forecasts focus predominantly on the uncertainties 

relative to future weather conditions, thus ignoring initial condition and model 

uncertainties. Two hypotheses have likely led to the community at large ignoring state 

and model uncertainty: 1) Forcing uncertainty is assumed to be the largest source of 

uncertainty; 2) initial states and model processes are the primary source of skill in 

seasonal forecasting. While the work in this dissertation is in agreement with both of 

these hypotheses, it is argued that other sources of uncertainty are still significant, and 

that adding the proper uncertainties to the models/states will not reduce the skill of a 

forecast. The seasonal forecasting literature generally suggests that state and model 

uncertainties are significant, based on the consistent finding that most forecasting systems 

underestimate total uncertainty (Wood and Schaake, 2008, Yuan and Wood, 2012). By 

focusing entirely on forcing uncertainty, the uncertainties related to initial conditions and 

the model are removed from the analysis, leading to erroneously small forecast variance. 
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In order to overcome this issue, seasonal forecasts must move towards treating the initial 

land surface states and model predictions as probabilistic values, in addition to 

meteorological forcing. Based on this theme, four objectives can be identified for this 

study: 

1. Demonstrate Reliable Water Supply Forecasting 

A first objective in this dissertation is to demonstrate how the proposed 

methodology can produce reliable probabilistic water supply forecasts at the basin-scale, 

for seasonal time periods. Volumetric estimates of runoff are necessary for guidance of 

an array of water management decisions, yet the accuracy of such estimates is often 

unsatisfactory. To this end, it should be of high priority to ensure that estimates of 

forecast uncertainty are statistically reliable. Given that probabilistic estimates of 

volumetric streamflow are reliable, risk within a reservoir system can be more effectively 

managed, thus reducing the chance of both flood damages and water shortages 

concurrently. 

 Research into probabilistic methods for water supply forecasts has developed over 

the past few decades. A first example is the ESP framework proposed by Twedt et al., 

(1977) and clarified by Day (1985). ESP works under the assumption that the primary 

skill in a hydrological forecast is based on land surface conditions, and as such treats 

initial conditions as deterministic quantities, while leveraging climatological stochastic 

forcing to account for poor knowledge of future meteorological conditions. The 

framework itself has prompted a number of studies to attempt to improve seasonal 

forecasting, including utilizing information from climate indices (Najafi et al., 2012) and 
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climate modeling products (Mo et al., 2012; Yuan and Wood, 2012). Since the literature 

suggests that some information about seasonal climate is available through both climate 

modeling and teleconnections, further studies have examined the assumption that skill is 

primarily derived from initial conditions (Li et al., 2009; Shukla et al., 2013; Wood and 

Schaake, 2008; Yossef et al., 2013). With an increasing focus on the relative skill of 

different aspects of seasonal forecasting, an increasing focus has been placed on 

determining how best to manage overall uncertainty in the modeling framework. This 

dissertation proposes an approach to quantifying total forecast uncertainty, and will test 

the proposed framework with a seasonal forecasting experiment at the basin scale. 

2. Demonstrate Reliable Drought Forecasting 

A second objective in this dissertation is to demonstrate a methodology to 

produce reliable probabilistic drought forecasts, which will be achieved by extending the 

proposed water supply forecasting system to the case of monthly and seasonal drought. 

This objective is motivated by the desire to develop a proactive drought mitigation 

system, and the understanding that there is insufficient data to perfectly forecast drought. 

As a result of this incomplete ability to predict drought, it becomes essential to quantify 

the certainty which one can place upon a drought forecast. While probabilistic forecasting 

systems are the norm for many hydrological variables, they are only recently being 

applied for characterizing drought uncertainty. 

Several recent examples of probabilistic drought forecasting are available (Hwang 

and Carbone, 2009; Madadgar and Moradkhani, 2013; Madadgar and Moradkhani, 2014; 

Pan et al., 2013 Yuan et al., 2013). While these are generally still in the development 
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phase, this marks progress in drought forecasting, and a movement away from 

reactionary drought management.  Based on the proposed water supply forecasting 

framework, a case study for probabilistic drought prediction will be developed to test 

drought forecast reliability. Within this experiment, it is of high importance to ensure that 

a forecast is truly reliable. This condition necessitates a critical analysis of reliability 

metrics, leading this dissertation to propose a new reliability metric with which to analyze 

probabilistic drought forecast reliability. 

3. Critically Examine Traditional Drought Quantification 

 Forecasting of drought is reliant on available methods for quantifying drought, but 

the conventional index based assessment is fundamentally flawed. Three specific 

problems associated with standardized indices are highlighted in this dissertation. First, 

current droughts indices assume that climate processes are stationary, thus having a 

constant variability, and that the available historical information covers a sufficiently 

long time period to characterize that variability. With the community’s increasing 

emphasis on the changing climate (Milly et al., 2008), and the short period of most 

climate records (Verdon-Kidd and Kiem, 2010), it is unlikely that a statistical index can 

completely describe the true intensity of a drought, as there is no truly representative 

dataset of current/future climate. Second, water demand is dynamic. Similar to the non-

stationarity of climate, one cannot rely on history to represent the effects of present-day 

and future drought. Further, spatiotemporal changes in societal water demand 

(consumption, industrial, irrigation) change much faster than climate processes, adding 

complexity to drought analysis in human affected environments. Since climate and 
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demand vary at different timescales, one cannot expect a drought index based on 

climatology to effectively determine observable impacts. Finally, the standardization of 

historical data may complicate the examination of spatially distributed drought 

properties. Hydrological variables are never evenly distributed spatially, leading to an 

overemphasis on typically dry regions with standardized indices. Since it is impossible to 

have a reliable drought forecast without a reliable drought index, this dissertation will 

examine how current drought indices may be unreliable, and suggest a possible starting 

point for advancing drought indices. 

4. Examine the persistence of model initial conditions in forecasts 

Hydrological forecasts are known to be strongly affected by all initial conditions 

in the short term, but the sensitivities to initial conditions at long lead times are not well 

understood. Over time, a forecast will progressively lose sensitivity to initial conditions, 

but the lead-time at which initial states are meaningful for a given forecast has yet to be 

quantified. This is an important point, as hydrological forecasts are in demand at time-

scales of a season to multiple years (Wood and Werner, 2011), depending on the 

application of the forecast. Given this scenario, quantifying the sensitivity of future land 

surface states to initial conditions is highly valuable for hydrologists. Two specific 

examples are highlighted in this dissertation: 1) examining the recovery time from a 

drought scenario and 2) understanding the extent to which improved initial conditions 

will help a given forecast system. 

Understanding the relationship between the intensity of drought conditions and 

the time to recovery is of great importance (Pan et al., 2013). Since a drought is 
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determined by some deficiency in water, that deficiency will take some amount of time to 

be alleviated. If the magnitude of that deficiency can be related to the expected recovery 

time, then mitigation measures may be focused during that expected drought recovery 

period. Without information about future climate, which is commonly assumed in 

hydrological forecasting, it is beneficial at the basic level to quantify the recovery time 

under normal conditions. This provides another view to drought intensity, beyond simply 

explaining the magnitude of the deficiency. Such information about the typical recovery 

time may be more functional to the general public and water resources managers alike, 

and therefore is of interest to society in general. Further, information about sensitivity to 

initial conditions is useful in considering potential methods to improve a given forecast 

system as well. 

Improving a forecast system involves reducing the uncertainty in at least one of the 

forecasting components discussed in Chapter 1. Of these three primary components, 

uncertainty related to initial conditions is the most straightforward to reduce, through the 

DA methods discussed in section 2.2.1. Although implementation of a DA system has 

been proven to reduce uncertainty in land surface states, and therefore initial conditions, 

it does require some resources to develop and maintain. Given this scenario, information 

about the sensitivity of forecasts in a given basin to initial conditions, at various lead 

times, would be highly beneficial in the development of forecast systems. If the forecast 

at the desired lead time is insensitive to the initial conditions, implementation of a data 

assimilation system may not be warranted. Alternatively, persistent influence of initial 
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conditions over the forecast at long lead-times would indicate that a DA system is highly 

beneficial. 

Recently, several studies have analyzed the sensitivity of extended forecasts to initial 

conditions, but have focused on the relative uncertainties in initial conditions and 

meteorological forcing (Li et al., 2009; Mahanama et al., 2011; Paiva et al., 2012; Shukla 

and Lettenmaier, 2011; Shukla et al., 2013; Yossef et al., 2013). These studies either 

compared the ESP methodology (deterministic initial conditions with climatological 

forcing) with Reverse Ensemble Streamflow Prediction (stochastic initial conditions with 

deterministic forcing) (Wood and Lettenmaier, 2008), or examined of the ratio of the 

variability of initial conditions and precipitation during the forecast period. Through these 

methodologies, it was generally shown that forecasts in snow dominated basins were 

controlled by initial conditions between three and six month lead times, when the initial 

forecast date occurred during the accumulation or ablation season, yet only forecasts for 

very large non-snow dominated basins were controlled by initial conditions beyond a 

single month. While this analysis provides a compelling argument for the use of data 

assimilation in short-term forecasts for all basins, and seasonal forecasts during spring 

and summer for snow dominated basins, such analysis falls short of determining the lead 

time at which initial conditions provide significant information. For example, forcing 

may be the dominant source of forecast skill beyond the seasonal time-scale for nearly all 

basins, but initial conditions may still have a significant impact on forecast uncertainty at 

longer lead times. Due to this shortcoming, this study attempts to quantify the time at 

which a forecast becomes entirely insensitive to initial conditions, and examines the rate 
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at which the information from the initial conditions is lost over time. By quantifying the 

specific lead time at which a forecast is no longer sensitive to initial conditions, a 

forecaster can provide clear evidence of the point at which data assimilation will be of no 

benefit, and provide insight into the recovery time expected from certain drought events. 

For the remainder of this study, drought recovery will be used to describe the loss of 

sensitivity to initial conditions, for consistency, and to specify that this dissertation 

focuses entirely on the effects of below average water storages on seasonal to annual 

forecasting. 
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4 Data and Models 

4.1 Hydrologic Models 

4.1.1 Variable Infiltration Capacity Model 

The Variable Infiltration Capacity (VIC) model is a physically-based, distributed 

model that solves the energy and water balance at the land surface, and spatially 

discretized units are generally placed on a regular grid (Gao et al., 2010; Liang et al., 

1994). In order to perform model calculations, VIC requires soil information, vegetation 

information, elevation bands, precipitation, maximum and minimum temperature, 

average wind speed, humidity, and incoming shortwave and longwave radiation for each 

grid cell. Land surface parameters for VIC simulations were gathered from the Natural 

Resources Conservation Services STATSGO dataset (soil) and the University of 

Maryland land cover dataset (vegetation). Elevation bands were defined using the United 

States Geological Survey’s National Elevation Dataset, with information from the 

Precipitation Regression on Independent Slopes Model (PRISM) yearly precipitation 

information to aid in the distribution of elevation band precipitation. Simulations were 

performed over the entire Upper Colorado River Basin (UCRB) at a spatial resolution of 

0.25°, which makes 473 model grid cells. Based on the hydrologic fluxes estimated by 

VIC, excess water is routed to the outlet of the basin with a combination of Nash-Cascade 

hydrologic routing and Muskingum-Cunge hydraulic routing. 
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4.1.2 National Weather Service Models 

The SNOW-17 (Anderson, 1973) and Sacramento Soil Moisture Accounting (SAC-

SMA) (Burnash et al., 1973) models are used by the NWRFCs to provide operational 

streamflow forecasts for flood and water supply monitoring. These models are coupled, 

with SNOW-17 handling snow accumulation/ablation calculations and SAC-SMA 

modeling the soil water storage component. Both SNOW-17 and SAC-SMA have a more 

conceptual nature to model equations than VIC, leading to an increased reliance on 

calibration, as opposed to soil and vegetation data. Fortunately, the NWS calibrated 

parameters for each basin within the UCRB have been made available by the Colorado 

Basin River Forecast Center. The NWS performs simulations from these models with 

elevation bands for each sub-basin, leading to 409 discretized units. To run SNOW-17 

and SAC-SMA, precipitation, average temperature, and potential evapotranspiration are 

required. Excess runoff from these models is routed to the outlet with a unit hydrograph 

for hydrologic routing and Lag/K for hydraulic routing. 

4.1.3 Radiative Transfer Models 

This study requires a model to estimate the passive microwave radiation from the 

land surface, which is referred to as a radiative transfer model. For modeling the radiation 

from the land surface, a combination of the L-Band Microwave Emission Model from the 

Biosphere (Wigneron et al., 2007), for the case of bare soil, and the Microwave Emission 

Model for Layered Snowpack (Weismann and Mätzler 1999), when snow cover is 

present, are used. Radiative transfer calculations from Microwave Emission Model for 

Layered Snowpack assume horizontally homogeneous layers of snow depth, density, 
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correlation length, liquid water content and temperature. Simulations from the L-Band 

Microwave Emission Model from the Biosphere model assumes a homogeneous soil, 

requiring information about soil temperature, bulk density, sand and clay contents and 

soil moisture content. Vegetation effects are modeled according to Pullainen et al. (1998), 

and atmospheric effects are accounted for as described in Durand and Margulis (2006), 

allowing for comparison of satellite observations. Both the VIC and SNOW-17 models 

estimate all snow variables necessary, with the exception of grain size, which is modeled 

according to Jordan (1991), and DeChant and Moradkhani (2011a). Alternatively, only 

the VIC model estimates physical soil moisture. Due to the conceptual nature of soil 

water storage in the SAC-SMA model, microwave emission in the 6.9GHz frequency is 

ignored for assimilation in the NWS models. Outputs from the radiative transfer model 

are in the form of brightness temperature (TB) for each frequency at each polarization 

(vertical and horizontal), which is the apparent temperature of earth, as observed by the 

satellite, assuming the earth is a black body (emissivity is 1). 

4.2 Study Area 

The proposed study area is the UCRB, defined here as the entire Colorado River 

Basin upstream of Lee’s Ferry (see Figure 1), which is located just downstream of Lake 

Powell. The UCRB is located in the southwestern US, covering portions of Wyoming, 

Utah, Colorado, Arizona and New Mexico. The basin drains an area of roughly 

280,000km
2
, with forest covering much of the upper elevations and shrub-land covering 

the valleys. This basin is semi-arid, with the majority of precipitation falling in the higher 

elevations as snow, and interior lowlands receiving very little precipitation annually. 
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Although this basin is semi-arid, a large population relies on its runoff. The mean 

naturalized yearly flow volume at Lee’s Ferry is roughly 18 billion cubic meters, 

providing water to 26 million people, with a minimum designated annual flow from Lake 

Powell set at 9.3 billion cubic meters. In Figure 1, the gauges of the three major sub-

basins (Green River, Colorado Headwaters/Gunnison and San Juan) and at Lee’s Ferry 

are identified. These basins are used for both calibration and large scale validation. In 

addition to these large sub-basins, 16 smaller sub-basins are used for more detailed 

analysis, which are not displayed in Figure 1. 
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4.3 Data 

4.3.1 Forcing 

Forcing datasets required for the VIC model are precipitation, maximum and 

minimum temperature, wind speed, humidity, and incoming shortwave and longwave 

radiation. Observed precipitation and temperature data was gathered from the NWS 

Cooperative Observer Program and Natural Resources Conservation Service Snow 

Telemetry (SNOTEL) sites, and then spatially distributed over the VIC model grid cells. 

Distribution of precipitation and temperature was performed with scaling based on 

PRISM monthly data (Daly et al., 1994), and inverse distance weighting. Wind 

observations were gathered from the NCEP/NCAR reanalsysis dataset (Kalnay et al., 

1996) and scaled to the modeling domain similar to the methods in Mauer et al. (2002). 

Humidity is estimated according to Kimball et al., (1997), shortwave radiation is 

estimated according to Thornton and Running, (1999), and longwave radiation is 

estimated according to Bras, (1990), all of which are performed internally in the VIC 

model. The NWS models require precipitation, temperature and potential 

evapotranspiration. All forcing for these models was provided by the Colorado Basin 

River Forecast Center, where precipitation and temperature are estimated from in-situ 

observations, and potential evapotranspiration is estimated based on pan evaporation 

rates. 

4.3.2 Naturalized Streamflow 

The UCRB is a heavily regulated watershed, which makes the use of gauge based 

observations for forecast verification questionable. A more prudent dataset would remove 
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the effects of human interactions with the rivers, primarily reservoir operations and water 

withdrawals. This is referred to as naturalized flow, and requires both in-situ observations 

and streamflow simulations. Naturalized flow data for the UCRB is provided by the 

United States Bureau of Reclamation (USDOI, 2005). This dataset contains flow 

reconstructions throughout the entire Colorado Basin, with 20 reconstruction locations in 

the upper region. Flows are in the form of monthly volumes. For the sake of this study, 

16 of the 20 different flow locations were chosen for verification, based on location 

within the model routing networks. In addition, this dataset provided the basis for 

calibration of VIC, which was optimized based on the root mean square error of monthly 

flow from the four major sub-basins in Figure 1. 

4.3.3 Passive Microwave Data 

Passive microwave brightness temperature from the Advanced Microwave 

Scanning Radiometer – Earth Observing System (AMSR-E) data was used in this study 

to perform land surface DA. AMSR-E is flown on the Aqua satellite, having a temporal 

frequency of about 24 hours and a spatial resolution ranging from 12 to 25km. TB was 

chosen for assimilation in this dissertation as it provides useful information about water 

stored at the land surface due to its sensitivity to SWE (18.7 and 36.5GHz AMSR-E 

channels) and soil moisture (6.9 GHz AMSR-E channel). With its sensitivity to both soil 

moisture and SWE, passive microwave observations provide valuable information about 

the water storage immediately above and below the land surface. This data is also 

attractive as it is not obscured by clouds. Passive microwave observations were gathered 

from the AMSR-E L2A dataset, which was recently shown to have greater information 
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content, with respect to SWE, than the spatially resampled EASE-Grid products  (Li et 

al., 2012), and then distributed to the centroid of each discretized modeling unit through 

inverse distance squared weighting. 

4.3.4 Land Surface Temperature 

Land surface temperature (LST) data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) were assimilated in conjunction with TB to improve model 

estimation of surface temperature, and therefore provide more accurate energy balance 

estimation and simulations from the radiative transfer models. LST from MODIS is 

particularly attractive for this dissertation because of the fine resolution observations (1 

km by 1 km) and the high frequency (up to 4 observations every 24 hours) of 

measurements, due to its deployment on both the Aqua and Terra satellites. With high 

frequency and resolution of the observations, MODIS LST is a powerful source of 

information about the land surface energy balance. Although the infrared wavelengths 

observed with this sensor allow for fine spatial resolution, they are obscured by clouds 

reducing the actual frequency of observations. LST from MODIS is estimated through 

the Generalized Split-Window Algorithm (Wan and Dozier, 1996), which uses the 

difference between MODIS bands 31 and 32, along with estimated land surface 

emissivity, to estimate the temperature of the land surface (Wan and Dozier 1996; Wan et 

al., 2004). In this study, MODIS LST is aggregated to model resolutions with spatial 

averaging of observations within each discretized modeling unit. 
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4.3.5 Data Error Models 

 Stochastic estimates of precipitation, temperature, wind, and potential 

evapotranspiration were used to drive the hydrological models. Precipitation uncertainty 

is assumed to be heteroskedastic and log-normal with a variance of 25% of the magnitude 

of the nominal value, temperature uncertainty (TB, LST and air temperature) is assumed 

to be homoskedastic and normal with a standard deviation of 3° C, and both potential 

evapotranspiration and wind are assumed to have a heteroskedastic normal uncertainty, 

with variance equal to 25% of the magnitude of the nominal value. The form and 

magnitude of these uncertainties follow previous studies (DeChant and Moradkhani 

2011a,b, 2012; Parrish et al., 2012). In addition, this study also utilizes spatially and 

temporally correlated perturbations as described by Clark and Slater (2006). For 

application of this method, a correlation length of 100km and temporal correlation of 5 

days was used for all inputs, which was suggested by Clark et al., (2008a) 
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5 Proposed Forecasting Framework 

5.1 Particle Filter 

The PF is a methodology to sequentially apply Bayes Theorem for reducing 

model estimated information at each time when an observation of the system is available 

(Gordon et al., 1993). Through this sequential updating scheme, the PF provides revised 

model estimates based on the observation, which is referred to as the posterior. In order 

to apply the PF, one must start with Bayes Law (equation (10)). 

 
 

)ˆ(

)(|ˆ
ˆ|

yp

xpxyp
yxp               (10) 

In equation (10), )(xp  is the prior probability of some model estimated value x, )ˆ(yp  is 

the probability of the observations,  xyp |ˆ  is the probability of the observation given the 

model estimate, which is referred to as the likelihood, and  yxp ˆ|  is the revised 

probability of x given the observation, referred to as the posterior. In addition, the ^ 

accent will note an observed quantity for the remainder of this dissertation. For sake of 

this study, the notation x is used to show the model estimated states. Application of 

equation (10) for the PF requires derivation of a sequential form, which is shown in 

equation (11). 
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1:1

1:1
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
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In equation (11), the posterior value is now the probability of the current states, given all 

observations (  tt yxp :1
ˆ| ), the likelihood is the probability of the current observation 

given the current state (  tt xyp |ˆ ), the prior is the probability of the state given all 
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previous observations ( )ˆ|( 1:1 tt yxp ), and the observation probability becomes the 

probability of the current observation given all past observations ( )ˆ|ˆ( 1:1 tt yyp ). Although 

the likelihood is readily calculated through a representative likelihood function, the prior 

and observation probabilities are not readily calculated, requiring further attention before 

evaluation of equation (11) is possible. 

 Equation (14) shows the final form of sequential Bayes Theorem for use in the 

filtering problem, which is developed from equations (12) and (13). A first requirement 

in the application of the PF is that the model is a first order Markov Process. By assuming 

that the model is Markovian, which is implicit in equation (1), the Chapman-Kolmogorov 

equation may be applied to estimate the prior probability, as described in equation (12). 

From this equation, the prior distribution is found to be equivalent to the integral of the 

product of the transition probability (  1| tt xxp ) and posterior at the previous time. The 

posterior at the previous time-step will be available at all times greater than 1, and the 

transition probability is equivalent to the model probability. Further, the observation 

probability may be estimated by treating the current states as an intermediate variable. 

Conveniently, equation (13) becomes the integration of the numerator of equation (14), 

therefore showing that sequential Bayes Law is the normalized product of the likelihood 

and the integration of the transition probability and posterior at the previous time step. At 

this point, the likelihood function, transition probability and previous posterior 

probability are the only quantities necessary to estimate the current posterior. 

      11:1111:1
ˆ||ˆ|   ttttttt dxyxpxxpyxp

               (12) 
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        ttttttt dxyxpxypyyp 1:11:1
ˆ||ˆˆ|ˆ

                (13) 
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ˆ|||ˆ
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      (14) 

Equation (14) allows for theoretical application of sequential Bayes Theorem, but 

further work is required to apply this to a real model. This equation will not have a 

tractable analytical solution in the applications examined here, and therefore a Monte 

Carlo experiment is necessitated to simulate the probability distributions. Since this is 

applied as a Monte Carlo experiment, using an ensemble to represent the state 

distribution, the posterior probability can be written according to equation (15), where wi,t  

represents the weight of ensemble member i and time step t, δ is the Dirac Delta function 

and N is the ensemble size. This equation represents an importance sample at time t. For 

application of the PF, Sequential Importance Sampling is performed by applying Bayes 

Theorem at each observation time, which simplifies to the normalized product of the 

likelihood and prior weights (equation (17)), given that the ensemble of land surface 

states and predictions are generated from equations (5) and (6). Thus the transition 

probability is treated through the stochastic model operators. Equation (16) shows the 

calculation of the likelihood, which is the probability of the residual (ŷi – yi,t) given some 

expected distribution of the residuals. A Gaussian likelihood is assumed in this 

dissertation, with variance of Rt, which is estimated as the observation error from section 

2.3.5.  
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 Sequential Importance Sampling provides a weighted ensemble of model states at 

each time step, which allows for representation of the posterior distribution. Assuming 

sufficient sample size, properly tuned error estimates, and accurate likelihood function, 

Sequential Importance Sampling will provide an exact sample from the true posterior 

distribution, with respect to the modeling framework. Although Sequential Importance 

Sampling provides the ability to perfectly estimate the posterior, over a sufficient number 

of model simulations, the required sample size will become too large to remain 

computationally feasible. In this scenario, the variance of weights will approach zero, as 

the weight of only a few ensemble members approaches unity, and the rest approach zero. 

This is referred to as weight degeneration. In order to overcome this problem, a 

resampling step may be performed, where the ensemble members of high weights are 

duplicated, and the ensemble members of low weights are discarded, thus ensuring a 

sample that remains in a meaningful portion of the posterior distribution. This is referred 

to as Sampling Importance Resampling, and generates a sample of equally weighted 

ensemble members (Arulampalam et al., 2002). The Sampling Importance Resampling 

algorithm is used in this dissertation, with resampling being performed at each 

observation time step. The resampling algorithm used is Multinomial Resampling (Douc 

and Cappe, 2005). 
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5.2 Bayesian Multi-Modeling 

Bayesian multi-modeling is a class of techniques that provide a weighted sample of 

models to quantify and reduce model uncertainty. Of these methods, Bayesian Model 

Averaging is the simplest technique. Bayesian Model Averaging was introduced to the 

climate forecasting community by Raftery et al. (2005) and later applied to hydrological 

modeling (Ajami et al., 2007; Duan et al., 2007). Bayesian Model Averaging extends the 

application of Bayes Law to the case of multiple possible models, where it is assumed 

that the varying model behavior implicitly represents the uncertainty in those models. In 

this methodology, an ensemble of models will be averaged according to equation (18). In 

equation (18), Mk represents the k
th

 model, out of an ensemble of K models, 1:1
ˆ

ty  is the 

training data from for all observations up to the previous time step, and )ˆ|( 1:1 tk yMp  is 

the posterior model probability. This equation represents the sum of the product of the 

posterior model probabilities and the forecast probability distributions (  ktk Myp |, ). In 

this application, model forecasts are typically deterministic, but probabilistic predictions 

are required, which necessitates the fitting of a probability distribution to the model. 

Within hydrological and atmospheric sciences, it is generally assumed that forecast 

uncertainty is normally distributed, according to equation (19), where  ),y|g(y 2

tk,t k  

applies a normally distributed uncertainty to the forecast from model k, with a mean of 

tk,y  and a variance of 2

k . Finally, the probabilistic forecast is estimated according to 

equation (20), where kw  is the model weight, which is an estimate of the posterior model 

probability. For evaluation of equation (20), both the model weights and variances are 
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necessary for model averaging. This creates a two parameter optimization problem, 

which is typically solved with the Expectation-Maximization algorithm, to maximize the 

forecast likelihood over the training period. Although Expectation-Maximization is 

commonly applied, any optimization algorithm may be used, and therefore it may be 

more prudent to use a global optimization algorithm (Duan et al., 2007). 

     


 
K

k

tkktktKtK yMpMypyMyp
1

1:1,1:1:1,:1
ˆ||ˆ,|           (18) 

   ),y|g(y| 2

tk,t, kktk Myp              (19) 
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tk,t1:1:1,:1 * ),y|g(yˆ,|             (20) 

Bayesian multi-modeling may be extended to the case of sequential weight 

estimation. Similar to the PF, it may be advantageous to update the weights at each 

available observation, thus having a sequential forecasting system. The sequential form 

of Bayesian Model Averaging is referred to as Sequential Bayesian Combination, and 

was proposed in Hsu et al. (2009). In this approach, model weights are calculated based 

on sequential Bayes Theorem, as shown in equation (21). This leads to dynamic model 

weights, which are used to create a forecast at each time step, similar to equation (19). In 

order to evaluate equation (21), some likelihood must be chosen, which is Gaussian in 

this study, and an a priori variance must be estimated, as shown in equation (22). 

Estimation of this variance is based on the residuals during the calibration period, as 

suggested by Hsu et al. (2009). 
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ktkt ypMyL               (22) 

5.3 Combining the Particle Filter and Bayesian Multi-Modeling 

 A major obstacle for Bayesian multi-modeling is the reliance on calibrated 

parametric distributions to model forecast uncertainty, as shown in equation (19). 

Although a parametric distribution allows for a simple approach for uncertainty 

estimation, it will be limiting based on the knowledge that model residuals typically have 

complex distributions (i.e. heteroschedastic and non-Gaussian). Since the model residuals 

are complex, a parametric distribution which properly fits the residuals is unlikely to 

exist. In order to overcome this problem, Parrish et al., (2012) proposed a method that 

uses the PF to generate the forecast distribution for model averaging. Since the PF can 

account for all sources of uncertainty simultaneously, and imposes only a weak 

assumption of Guassianity, the PF generates a more appropriate forecast distribution than 

by simply assuming a distribution is Gaussian. Therefore the predictive distribution from 

the PF ( )ˆ|( 1:1 tt yxp ) may replace equation (19), which must be expanded to the case of 

multiple models, as shown in equation (23). In equation (23), the forecast probability is 

set equal to  1:1,
ˆ,,| tkttk yMxyp , which is conditioned on all previous observations 

(filtering prior), for the k
th

 model. The forecast probability is expanded to the integration 

of the product of the prediction from the current states,  ttk xyp |,   (observational 

operator), and the posterior at the previous time step from the PF,  1:1
ˆ,| tkt yMxp , which 
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is approximated by the importance sample of the predictions from model k. In order to 

evaluate the model probability, as is performed in equation (21), a Kernel Smoothing 

density is used to locate the probability of locations between the ensemble members. For 

the case of sequential model weight estimation, the model posterior weights are estimated 

according to equation (24), where  ktkt MyyKS ,|ˆ
,  is a Kernel Smoothing estimate of the 

likelihood, conditioned on the probabilistic model prediction. This leads to a final model 

averaged forecast according to equation (25). Through this methodology, a model 

averaging system is developed, which simultaneously accounts for initial condition, 

forcing and model uncertainties, thus providing a useful framework for the forecasts of 

interest in this dissertation. 
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5.4 Ensemble Hydrological Forecasting 

Among the most common ensemble hydrological forecasting systems is ESP, which 

is used by the NWSRFCs to create probabilistic forecasts of streamflow volumes at 

various lead times. This method leverages stochastic meteorological data to generate a 

Monte Carlo sample of streamflow predictions to represent the uncertainty of in future 
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streamflow estimates. As described in equation (26), the ESP technique creates an Monte 

Carlo sample of streamflow simulations over the forecast period, with each individual 

simulation referred to as a “trace”, generated from the deterministic states, tx , resampled 

historical forcing,  tYu ,1:1   (Y  represents the current year), and some hydrological model 

M , from the initial forecast time t, to estimate the probability of volumetric streamflow 

forecast ty~ . Note that   ,,, ,tyt uxM  represents the combined hydrologic model ( f ) 

and routing function ( h ), which forecasts volumetric streamflow over a desired lead 

time, and tyw ,  is the weight of each trace from initial forecast time t, which is typically 

set uniformly to 
1

1

Y
. While the common practice is to give each trace equal weight, 

these weights may be estimated with additional climate information (Najafi et al., 2012), 

thus developing an importance sample of streamflows. 
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Initial states for this method are generated through a deterministic spin-up, performed 

with observed historical forcing. Starting at this point, the model is forced with resampled 

historical forcing ( tYu ,1:1  ), beginning at the initial forecast date, for each historical 

observation year, to estimate meteorological climatology, thus producing a stochastic 

streamflow forecast. Within this framework, climatology is used to represent the total 

uncertainty related to the forcing data. By generating a stochastic streamflow forecast 

through ESP, it is assumed that the initial state estimates are perfect, the resampled 

historical climate variability represents the future climate uncertainty, which inherently 
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assumes climate stationarity, and the model is perfect. Given that the assumptions of 

climate stationarity, accurate model initial state estimates and perfect model structure are 

not significantly violated, ESP will provide a reliable probabilistic prediction of 

volumetric streamflow at the desired lead time. 

5.5 Framework for Comprehensive Accounting of Hydrological Uncertainty 

 In any real application of ESP, the assumptions of perfect initial states and model 

structure will be violated, necessitating a methodology to account for uncertainties in the 

states and models, which is performed here with a combination of the PF and Sequential 

Bayesian Combination (referred to here as PF-SBC). Application of PF-SBC to the ESP 

framework requires two steps, which are outlined in Figure 2. First, DA is performed in 

each model during the spin-up period to produce stochastic states at each initial forecast 

date ( tNx ,:1 ), following the application by DeChant and Moradkhani (2011b). This 

ensemble of land surface states represents the uncertainty at the initial forecast date, and a 

resulting distribution of streamflow forecasts from these states is shown in equation (27), 

where  tti yxp :1,
ˆ|  is the posterior distribution from the PF, and the weights ( tiw , ) are 

uniform due to the application of Sampling Importance Resampling. Equation (27) 

describes the single model ESP with DA forecast developed in DeChant and Moradkhani 

(2011b). 
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A second step is performing ESP with DA for all models. In this step, each model 

and initial state ensemble member is propagated forward with the ESP framework, 

providing a multi-model ensemble forecast, creating   KYN  1 streamflow traces. At 

this point, a stochastic multi-model forecast is available, represented by 

 KYtNt Muxyp :11:1,:1 ,,|~
 , but this does not account for the relative accuracy of each model, 

thus creating an overly uncertain forecast. In order to reduce this uncertainty, each model 

is averaged according to PF-SBC, based on weights estimated from the observations 

during the spin up period ( ty :1
ˆ ). The proposed methodology estimates the probability 

distribution of ty~  based on resampled historical forcing, stochastic states and multiple 

weighted models, as represented in equation (28). In the application presented here, both 

tiw ,  and tyw ,  are uniform, and therefore their product is equal to   1*1 YN , making 

the weight of each trace estimated by equation (29), where  tk yMp :1
ˆ|  is estimated 

according to according to equation (24). 
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5.6 Drought Quantification 

5.6.1 Climatological Indices 

Hydrologic drought is quantified in this study with the Standardized Streamflow 

Index (SSI) (Mckee et al., 1993). SSI is described in equation (30) and (31), where the 

forecasted flow volume kiyty ,,,
~ , for initial start date t , based on forcing year y, ensemble 

member i and model k, is transformed, based on an assumed distribution mtF , ,  into the 

space of the observed flow cumulative distribution ( kiyt ,,, ). In this dissertation, mtF ,  is a 

log-normal distribution fit to all historical flow observations for start date t and the 

corresponding forecast length m. In Madadgar and Moradkhani (2013), the log-normal 

distribution was found to be a generally reasonable fit in the Gunnison River Basin, 

which is a sub-basin of UCRB, motivating its use in this dissertation. After transforming 

flows into the probability space, they are translated into the normal space with the inverse 

normal distribution ( 1 ) to generate the corresponding index value ( kiytSSI ,,, ). 

 
kiytmtkiyt yF ,,,,,,,

~                          (30) 

 
kiytkiytSSI ,,,

1

,,,                 (31) 

In addition to the SSI, this study will also examine a spatially distributed drought 

index. This is a standardized index of the total land water storage (LWS), which is 

defined here as the sum of soil moisture (between the surface and 1 meter below the land 

surface) and SWE. Throughout this dissertation, the standardized version of the LWS will 

be referred to as the Standardized Land Water Index (SLWI). Similar to the SSI, the 

SLWI is estimated based on historical climate during a given month. Following equations 
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(30) and (31), but substituting the LWS for streamflow, the SLWI is a standardized value 

assuming a log-normal distribution. With respect to the SLWI, only the VIC model will 

be used as the SAC-SMA model does not estimate physical soil moisture, and historical 

climate is based on historical model simulations, as opposed to the SSI which is based on 

the observed historical record. 

5.6.2 Physically-Based Index 

In order to develop a physically-based drought index, this dissertation builds on the 

Soil Moisture Index (SMI) developed in Hunt et al. (2009). The SMI is based on the 

fraction of available water ( AWF ), calculated in equation (32), where SM  is the soil 

moisture, FCSM  is the field capacity and WPSM  is the wilting point. In order to convert 

the fraction of available water to an index, the value is scaled between -b and b, 

according to equation (33), which assumes that water stress in crops occurs at a AWF  

around 0.5 (Baier, 1969), thus providing a physically meaningful drought measure. 

Though this index was formulated for small scale agricultural purposes, it has the 

potential to be generalized for a wider drought analysis. In this dissertation, a Modified 

SMI (MSMI) is presented to account for snow, in addition to soil moisture, thus 

generalizing the SMI for use in regions where snow is significant. In this index, the soil 

water content is adjusted with the addition of SWE, according to equation (34), with the 

assumption that a majority of the SWE will melt and enter the soil matrix. This creates a 

new AWF  value, which may be scaled similarly to the SMI, as shown in equation (35). 
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SWESM A                (34) 
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5.6.3 Drought Forecast Values 

Deterministic and stochastic forecasts of streamflow drought are generated in this 

dissertation, which requires the designation of drought expectation and probability. From 

the stochastic forecasts of monthly and seasonal SSI described in section 5.6.1, drought 

expectation and drought probability may be estimated, assuming a drought threshold of   

-0.5. This threshold is presented mathematically in equation (36), where kiytd ,,,  is a binary 

value with a value of one indicating drought and a value of zero indicating no drought. 

For probabilistic forecasting, the drought probability ( tp ) is estimated according to 

equation (37). In order to produce a deterministic forecast, the drought expectation ( tD ) 

is estimated based on the drought probability, where a drought is forecasted if the tp  is 

greater than 0.5, which is shown in equation (38). Finally, drought observations are 

described in equation (39), where tO  the drought observation, with one indicating a 

drought being observed and zero indicates no drought being observed. Based on these 

values, forecast will be performed as described in Chapter 7. 



 


otherwise

SSIif
d

kiyt

kiyt
0

5.01 ,,,

,,,             (36) 

 


  


1

1 1 1

,,,,,,

Y

y

N

i

K

k

kiytkiytt dwp              (37) 



www.manaraa.com

55 

 



 


otherwise

pif
D

t

t
0

5.01
             (38) 






otherwise

droughtif
Ot

0

1
             (39) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

56 

 

6 Forecast Verification 

6.1 Underlying Theory of Forecast Verification 

Forecast verification falls into two categories, deterministic and probabilistic, for two 

different types of forecasts, continuous and discrete. With respect to the different 

categories of forecast verification, deterministic measures are more common, as most 

forecasting frameworks are developed based on deterministic methods, and the 

framework is more intuitive for a wider audience. The basis for deterministic measures is 

demonstrating a reduction in errors of the forecast technique. Such a focus on reducing 

errors is understandable for forecasters and the general public alike, but the utility of 

deterministic measures may become questionable when noting that they require 

assumptions about the distribution of errors, which is typically non-gaussian, and may be 

biased towards overconfident or underconfident forecasts. Therefore this study will focus 

primarily on probabilistic methods, with the addition of a few deterministic measures for 

drought forecasting. 

Probabilistic measures, for both continuous and discrete forecasts, are necessary for 

determining the utility of a forecast. Primarily, a user of a probabilistic forecast will be 

interested in performing some analysis of the risk of an event occurring. Given some 

level of risk, and the consequence of an event occurring, a practitioner will determine 

what action, or lack of action, is appropriate to mitigate damages. In order to effectively 

perform such management of risk, the forecaster will provide information that represents 

the true probability that an event will occur. Such a forecast is termed reliable, and is 

defined here as a forecast that satisfies the indistinguishability paradigm (Annan and 
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Hargreaves, 2010). This paradigm states that a forecast is reliable if the distributions from 

which the forecast and observation are being drawn are indistinguishable, and therefore 

the forecasted probabilities may be assumed to follow the same probability distribution as 

the observation. Given that a forecast is reliable, a second quality is desired: forecast 

sharpness. Sharpness refers to the certainty of a forecast (tendency towards 0 or 1 for 

discrete forecasts, and forecast variance approaching 0 for continuous forecasts). 

Increased sharpness (reduced uncertainty) is noted as a highly desirable attribute of a 

reliable forecast, indicating to more confident predictions. With these two attributes 

desired, this dissertation takes the position that an optimal forecast will maximize 

sharpness, given the condition of reliability (Gneiting et al., 2007, Pal, 2009). Assuming 

that two reliable forecasts are available for some phenomena, the sharper forecast will be 

selected. Further, given that a forecast is reliable, it will be chosen over all unreliable 

forecasts, regardless of sharpness. The following probabilistic measures will be analyzed 

in this dissertation, and each examines one or both of the desired forecast characteristics.  

6.2 Continuous Predictands 

6.2.1 Probabilistic Measures 

Reliability assessment in forecasts of continuous variables is challenging because 

the forecaster will not know the true form of the forecast uncertainty. Many forecast 

verification frameworks will assume that the uncertainty is Gaussian, assuming that the 

central limit theorem is applicable. Although this strategy is common, it is approximate. 

Since a forecaster does not know the true form of the uncertainty for each forecast, a 

better strategy is to rely on the Probability Integral Transform (PIT) theorem. This 
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theorem states that a random variable, being drawn from any continuous distribution, 

may be translated into a uniform random variable through the cumulative distribution 

function (CDF) of the sampling distribution, as shown in equation (40). 

 




y

dyypz

ˆ

               (40) 

In equation (40),  yp  is the PDF of the forecast variable, ŷ  is the random variable 

being drawn from that distribution, and z  becomes a uniformly distributed random 

variable if ŷ  is drawn from  yp . Based on this theorem, the reliability of the forecast 

may be examined by testing if a string of observations appear to be random variables 

drawn from the forecast distributions. Therefore one will test the uniformity of the PIT. 

Given that the PIT is uniform, the observation and forecast distributions may be deemed 

indistinguishable, thus validating the hypothesis that the forecast is reliable. Based on the 

PIT, three probabilistic verification methods are used in this dissertation: The Exceedance 

Ratio (ER) (Moradkhani et al., 2006; Moradkhani and Meskele, 2009), the reliability (R) 

metric (DeChant and Moradkhani, 2011b; Renard et al., 2010) and the predictive 

Quantile-Quantile (QQ) plot (Laio and Tamea, 2007). 

 The ER can be applied to any predictive quantile range desired, but here it is used 

to analyze the tails of the distribution (99%, 95% and 90%). Calculation of the ER of a 

given quantile range is performed according to equations (41), (42), and (43), with 

equation (41) being the application of the PIT. In these equations, the cumulative 

probability of each observation, given its respective forecast, is represented by tz . The 

uniformity of vector z can then be analyzed at any predictive bound P desired, as shown 
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in equation (42). Then the ER is estimated as the percentage of observations that fall 

outside this quantile range, which should be equal to 
2

1 P
, which is evident from the 

uniform distribution. Since the ER is used to examine the tails of the distribution, a 

metric is also necessary to examine the whole probabilistic forecast. R is used here to 

examine the entire predictive distribution. This measure describes the average absolute 

difference between the PIT and the uniform CDF, and is described in equations (41), 

(44), and (45). Similar to the ER, a vector z  is calculated, and then sorted in ascending 

order, as noted in equation (44). R can then be calculated according to equation (45), 

where the ẑ  are compared against the uniform cumulative density to determine the 

accuracy of the probabilistic forecast.  A value of one equals a perfect forecast and a 

value of zero is the mathematically worst forecast. 
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 The predictive QQ plot is used as a visual method to diagnose errors in the 

forecast distribution. This plot compares the ẑ  vector on the x-axis, and the uniform 

distribution on the y-axis, to examine the reliability of the forecast distribution. Given 
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that the plot follows a 1:1 line, this forecast is perfectly reliable (R=1). If the predictive 

QQ line falls above the 1:1 line, the forecast has a high bias (observations have a 

tendency to fall too low in the forecast distribution) and a predictive QQ line falling 

below the 1:1 line indicates a low bias. In addition to bias, the over/underconfidence of a 

forecast distribution can be diagnosed with this plot. If the predictive QQ line falls above 

the left side of the 1:1 line and crosses the 1:1 line in the middle, the forecast is 

overconfident (a disproportionately high number of observations being captured by the 

outer quantiles) and the reverse indicates underconfidence. For a more complete 

explanation of this plot, see Laio and Tamea (2007). 

6.3 Discrete Predictands 

6.3.1 Deterministic Measures 

Droughts are discrete events with only two possible outcomes, occurrence or non-

occurrence, simplifying the performance measures from the more general categorical 

events to binary. The binary nature of droughts lends itself to three deterministic 

measures: The Probability of Detection (POD) (equation (46)), the False Alarm Ratio 

(FAR) (equation (47)) and the Critical Success Index (CSI) (equation (48)) (Wilks, 

2006). In these equations, TP (true positives) is the number of correctly forecasted 

drought occurrences ( 1tO  and 1tD ), FP (false positives) is the number of forecasted 

drought occurrences in which a drought did not occur ( 0tO  and 1tD ), and FN (false 

negatives) is the number of drought occurrences that were not forecasted to occur ( 1tO  

and 0tD ). POD provides a measure of the likelihood that any given occurrence of 
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drought will be forecasted. Since this score may be perfect in the event of extreme bias 

(i.e. all tD  are 1), the FAR is provided to give a measure the probability of a drought 

prediction being a false positive. Alternatively, FAR will be perfect in extreme bias in the 

opposite direction (i.e. all tD  are 0). This suggests that an overall metric may be more 

useful for drought forecast analysis. This is provided with the CSI, where the number of 

correctly forecasted droughts (TP) divided by the number for forecasts in which a 

drought is observed, forecasted or both ( FNFPTP  ). With this mathematical setup, 

CSI is designed to reward correctly forecasting drought events, and penalize false 

positives. Therefore the CSI is only maximized when the forecasts perfectly match the 

observations, providing a generally more useful metric than POD and FAR. 

FNTP

TP
POD


               (46) 

FPTP

FP
FAR


               (47) 

FNFPTP

TP
CSI


               (48) 

6.3.2 Probabilistic Measures 

6.3.2.1 Approximate Measures 

Among the most common probabilistic verification measures for binary events in 

hydrometeorology is the Brier Score (BS) (Brier, 1950), shown in equation (49). The BS 

has several beneficial features that have sustained its continued use over the past half 

century. First, it is strictly proper (Gneiting and Raftery, 2007) and therefore is optimized 

if and only if a forecast is perfect with respect to the observation. Propriety also implies 
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that the forecast is multi-objective, thus examining reliability and sharpness components. 

This multi-objective nature leads to a second major benefit of the BS, it may be 

decomposed into its separate components for more detailed analysis (Murphy, 1973). A 

decomposition of the BS is provided in equation (50), where the reliability, resolution 

and uncertainty, shown respectively as different terms on the right hand side of equation 

(50), are displayed as different components of the forecast. This is a common 

representation of the BS decomposition, but it should be noted that equation (50) assumes 

sufficient bin size to ignore within-bin variance of the forecast (Stephenson et al., 2008). 

From this decomposition, the resolution and uncertainty are shown to be properties of the 

observations, and therefore independent of the forecast, making these components 

unimportant when comparing forecasts of the same phenomena. In order to calculate the 

decomposed elements of the BS, it is necessary to group similarly valued probabilistic 

forecasts into B forecast bins. Each bin has a population of bn , with an average forecasted 

probability of bp  and an observed frequency of bO , and the final variable to be defined 

is the overall observation frequency O . Of high importance here is the reliability 

component, which measures the mean square error of the bin frequencies. A rarely 

discussed point, but important for this discussion, is that the reliability component of this 

decomposition is a normal approximation to the Binomial Distribution, which leads to a 

third benefit of the BS. Since each bin represents a sample from the Binomial 

Distribution, and a normal approximation will asymptotically approach the exact solution 

with increasing sample size (Feller, 1945), the BS may become a nearly perfect estimator 

of reliability as sample size increases. A final benefit of the BS is the simplicity of the 
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measure. With such a simple design for scoring competing probabilistic forecasts, 

comparison of competing forecasts is readily performed, and will have a high level of 

accuracy if sample size is sufficient. 

 
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A second verification method in this study is the reliability diagram (Franz et al., 

2003, Wilks, 2006). The reliability diagram employs a similar binning methodology to 

compare forecasted probabilities with observed frequencies as the BS, but is presented 

graphically for assessing the accuracy of different forecast bins. Grouped forecast 

probabilities ( bp ) are placed on the x-axis and the observed frequencies ( bO ) are plotted 

on the y-axis, and compared against the cumulative uniform distribution (one-to-one 

line). The reliability diagram should be approximately uniform, as the expectation is 

bb pO   given a reliable forecast distribution. By graphically showing the deviations 

from the expected observation frequency, bin dependent biases can be observed, helping 

diagnose forecast errors. Although proximity to the uniform line aids in understanding 

errors in probabilistic forecasting, it is not entirely consistent with the proper statistical 

distribution (Binomial), and therefore may not be entirely reliable (Bröcker and Smith, 

2007). Through the recognition that each bin is a separate binomial distribution, the 

deviations shown in the reliability diagram are known to be approximations of the 

probability that a bin is reliable. Therefore, it is best to view the reliability from the 

perspective of the Binomial distribution. 
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The Binomial distribution describes the probability of a number of events occurring (

K ) over a given number of trials (
bn ), with the event having a certain probability ( bp ). 

The PDF of the binomial distribution is shown in equation (51), where the 








K

nb
 is the 

binomial coefficient, which calculates the total number of combinations that K  events 

may occur within 
bn  trials, and each of those combinations has a probability of 

  Kn

b

K

b

b

pp


1 , which makes ),,( bb pnKf  equal to the probability of the given scenario 

occurring. In Bröcker and Smith (2007), the Binomial CDF, shown in equation (52), was 

used to translate the reliability diagram into probability space, for more precise 

comparisons of different forecasts. This methodology allows for more effective analysis 

of forecast reliability within the reliability diagram, more accurately determining which 

forecast is most likely to be reliable. 
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6.3.2.2 Exact Solution 

The BS and reliability diagram provide useful tools for comparing probabilistic 

forecasts, but each suffers from similar drawbacks. Three specific problems with these 

approaches are identified here. First, each method is approximate. While it was noted 

previously that the normal approximation to the binomial distribution, and therefore the 

BS, becomes accurate for large ensemble sizes, in practice there will rarely be enough 
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observations to make errors negligible. Prior to analysis with the Binomial distribution, 

this was a similar symptom of the reliability diagram, as it directly analyzes residuals of 

the forecasted and observed distribution. A second drawback is approaching the problem 

from the Binomial distribution is limiting. It becomes a balance between having 

sufficiently small forecast bin variance to reduce errors, and enough observations in each 

bin to draw a meaningful conclusion. A final drawback is that these metrics are 

ambiguous. Rather than distinguishing between reliable and unreliable forecasts, the BS 

and reliability diagram only estimate the probability of reliability. It is more desirable to 

select all forecasts that may be deemed reliable, and then compare the reliable forecasts 

solely on their sharpness. In order to overcome these problems, an exact model for 

reliability is required, which can distinguish between reliable and unreliable forecasts, 

and does not require binning. 

An exact model of probabilistic event forecast verification may be achieved 

through the generalized form of the Binomial distribution, where probabilities are 

allowed to vary. This generalized distribution is referred to as the Poisson-Binomial 

distribution (Hodges and Le Cam, 1960), and is presented in equation (53). In equation 

(53), kS  is a function identifying all possible combinations of the k  droughts occurring 

throughout the T  forecasts ( kS  contains 








k

T
 combinations), and A  signifies all drought 

occurrences in combination kS  and cA  represents all non-drought occurrences from kS . 

From equation (53), the entire string of drought probabilities is used to estimate the sum 

of the probabilities of each combination of drought events occurring, up to the observed 
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number of droughts. In the event that all forecasted probabilities are equal, this equation 

will collapse to the Binomial CDF in equation (52). Equation (53) therefore provides a 

mathematically exact model of reliability assessment in the probabilistic drought forecast 

setting. By utilizing the Poisson-Binomial distribution, the probability that a forecast is 

reliable can be estimated exactly, and without grouping observations. While this method 

is exact, and avoids the requisite binning process, it does not directly provide a means for 

distinguishing between reliable and unreliable forecasts. 
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This dissertation follows the method of formal hypothesis testing for 

distinguishing between reliable and unreliable forecasts, where an attempt is made to 

reject the null hypothesis that a forecast is reliable. Commonly this takes the form of 

assuming some significance interval. Given that a cumulative probability falls outside 

some predefined significance interval (95% in this study), then the hypothesis of 

reliability will be rejected. More specifically, if   975.0025.0  KkF , the hypothesis 

of reliability is not rejected. In the event that the hypothesis of reliability is not rejected, 

the forecast and observation distribution are deemed indistinguishable. 

Use of the Poisson-Binomial distribution has one primary drawback. Although the 

Poisson-Binomial probability density function is computationally tractable, direct 

estimation of the CDF is computationally infeasible for any useful sample size. In order 

to overcome this issue, it is possible to use the Discrete Fourier Transform and the 

Characteristic Function, as demonstrated by Hong (2013), to solve the CDF at any 



www.manaraa.com

67 

 

practically relevant sample size. With the ability to solve the Poisson-Binomial CDF, an 

exact model of the probabilistic forecast setting is available, and thus the hypothesis of 

reliability may be properly tested. 

6.3.2.3 Sharpness 

The probabilistic verification metrics examined to this point have been focused on 

assessing reliability, but in the event that multiple forecasts are deemed reliable, it 

becomes necessary to compare the forecasts based on sharpness. Two methods are used 

in this manuscript for examining the sharpness of forecasts, both of which rely on the 

understanding that a sharp drought forecast will tend towards probabilities of 0 or 1. First, 

a histogram of the forecast probabilities examines the distribution of probabilities ( Tp :1 ), 

which allows for visual assessment of sharpness as the histogram becomes increasingly 

U-shaped. Second, the variance of the Poisson-Binomial distribution, as shown in  

equation (54), is used as a quantitative measure. Since the variance indicates that 

dispersion in the forecast probability density, it is therefore a measure of the certainty of a 

forecast. In order to maximize sharpness of a forecast, the variance must be minimized, 

and therefore the perfect forecast will fall within the significance interval of the Poisson-

Binomial distribution, and have a variance of 0. 
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7 Experimental Setup 

7.1 Water Supply Forecasting 

 In the water supply forecasting experiment presented in this dissertation, seasonal 

ensemble forecasts are examined from seven different modeling scenarios. The first two 

forecast experiments are the standard ESP method, referred to as “open loop”. The first 

open loop experiment is performed with the NWS models, and the second open loop 

experiment is performed with the VIC model. Each open loop experiment performs a spin 

up to an initial forecast date, and then 29 separate forcing years are resampled between 

1981 and 2010 to represent climatology (the forecast year is excluded leaving only 29 of 

the 30 years used). Four more experiments are performed with DA as a spin up. Each 

model (VIC and NWS) has a spin up with TB only and TB/LST DA. Each DA 

experiment uses 100 ensemble members, leading to 100 initial condition estimates at 

each forecast time step, from October 1
st
, 2002 through September 30

th
, 2008. With 29 

resampled forcing time series’ and 100 initial condition ensemble members, 2900 

forecast traces are possible. In the VIC model, it is infeasible to perform all 2900 

combinations of initial condition ensemble members and historical forcing years due to 

computational constraints, and therefore 500 combinations were sampled uniformly from 

those 2900. Computational demand in the NWS models is significantly lower, and 

therefore all 2900 combinations are performed. The final experiment is a model 

averaging experiment, based on PF-SBC, of all 6 prior modeling scenarios. All traces are 

weighted according to the equations in Chapter 5.5 and Figure 2, and the weighted 

ensemble is evaluated. Within the PF-SBC algorithm, all streamflow observations are 
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utilized for model weighting, up to the initial forecast date, which makes the minimum 

length of training data 3 months, and this is deemed reasonable based on the findings in 

Parrish et al., (2012). Each forecasting experiment estimates three month volumetric flow 

from start dates on the 1
st
 and 15

th
 of January through June, in the years 2003 through 

2008. This leads to a total of 72 seasonal forecasts from each modeling scenario. 

7.2 Probabilistic Verification of Binary Outcomes 

A synthetic probabilistic forecasting experiment is performed to demonstrate 

errors in conventional verification methods. In this example, hypothetical probabilistic 

forecasts are sampled from a uniform distribution to examine the idealized case (Case 1), 

as shown in equation (55). In the event that a distribution of probabilistic forecasts 

deviates from uniform, as will be typical of real forecasts, errors are expected to increase 

in the BS and reliability diagram. Two alternatives to Case 1 are created to examine the 

extent of these errors. Case 2 is a skewed distribution, generated from equation (56), and 

Case 3 is a “U” shaped distribution, with a tendency to forecast towards 0 or 1 (increased 

sharpness), according to equation (57). J  is set to 500  in this experiment. 

 1,0~1, Up j                (55) 
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Observations for each forecast are sampled with a probability equal to the 

forecasted probability, according to equation (58). This provides randomly distributed 
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events, which are statistically indistinguishable from the forecasted probabilities, thus 

ensuring a reliable forecast. Results from these synthetic experiments are presented in 

section 8.2. 
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7.3 Drought Forecasting 

Based on the streamflow forecasts generated in the water supply forecasting 

experiment, drought status is forecasted for up to three month lead times, starting on the 

1
st
 and  15

th
 of January through June, for years 2003 through 2008, for 16 sub-basins of 

the UCRB. This provides a drought forecasting experiment with 1152 individual drought 

forecasts. From each of these forecasts, the drought status in the 1
st
, 2

nd
 and 3

rd
 month 

following the initial forecast date is estimated. From these forecasts, both deterministic 

and probabilistic forecast verification are performed to examine the utility of data 

assimilation and model averaging in drought forecasting. 

7.4 Assessing the Need for a New Drought Index 

Critical examination of drought indices is necessary to determine the drawbacks of 

standardization, and to suggest ways to move forward. Of the three problems of 

standardized indices highlighted in chapter 3, this dissertation focuses on the effects that 

standardization has on spatial drought analysis. Although issues of non-stationarity are 

equally as important as spatial errors for drought analysis, examination of the effects of 

spatial errors is much more quantifiable, and therefore is the focus here. In order to 

examine these spatial errors, this study will examine spatially averaged drought time 
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series’ from different drought indices, and compare them spatially at specific dates of 

interest. Further, the importance of the physically based index for drought quantification 

within the context of advanced land surface modeling techniques (i.e. DA) will be 

discussed. 

7.5 Sensitivity of Droughts to Initial Conditions 

7.5.1 Simulations 

Two separate ensemble LWS estimation experiments are performed in this study: 1) 

resampling of states from a 30-year historical VIC simulation, from April 1
st
 1981 

through June 30
th

 2011, referred to as climatology, and 2) forecasting ESP initialized with 

states estimated from the VIC model with TB/LST data assimilation, referred to as the 

forecast (DeChant and Moradkhani, 2011b). With respect to climatology, the LWS values 

are sampled from each year of the historical simulation, providing an ensemble of 30 

LWS values at each time step over the forecast lead time, as shown in equation (59), 

where c

tLWS  represents the climatological distribution of LWS values at time t . 

 c

t

c

t

c

t

c

t LWSLWSLWSLWS 30,2,1, ...            (59) 

This represents the forecast of greatest possible uncertainty, as it does not utilize 

information about the initial conditions or meteorological forcing beyond the historical 

record. Alternatively, the forecast samples initial land surface states from the posterior 

distribution estimated with data assimilation at the forecast start date, and then performs 

simulations from those states with meteorological forcing sampled from the same 30 year 

dataset used to simulate climatology. 500 combinations of the initial conditions and 
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meteorological forcing time series’ were sampled randomly, and a forecast was generated 

from each of these combinations, thus creating an ensemble forecast of 500 members, as 

shown in Figure (60). 

 f

t

f

t

f

t

f

t LWSLWSLWSLWS 500,2,1, ...            (60) 

The forecast has increased information beyond climatology resulting from the land 

surface state initialization. As the forecast progresses in time, the information added to 

the forecast from these initial states will reduce over time, leading to the forecast 

approaching the climatological distribution, and therefore moving away from the initial 

drought conditions.  

 The climatology and forecast estimate the LWS over a lead time of 360 days. This 

provides an extended period which is assumed to be of sufficient lead time for forecasts 

to approach climatology, thus becoming insensitive to the initial drought conditions. 

These forecasts are performed from April 1st, to correspond with the date of peak snow 

water storage, and from July 1st, to correspond roughly to the date of peak soil moisture 

and minimal snow influence, for each year from 2003 through 2008. By forecasting for a 

360 day period, initialized with states on April 1st and July 1st, the time and rate of 

recovery from drought conditions throughout the UCRB will be quantified for both snow 

dominated and non-snow dominated seasons. For the analysis here, the LWS is averaged 

in 10 day increments, which is performed to smooth out the daily noise in the LWS 

variable, leading to more consistent results. The 10 day increment was chosen based on a 

comparison of increments ranging from 1 to 30 days, with 10 being a balance of daily 

noise reduction and retaining sufficient temporal resolution. 
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7.5.2 Quantifying Drought Recovery Lead Time 

The drought recovery study works under the assumption that the basin has fully 

recovered from a drought at the lead time when the forecast and climatology ensembles 

become statistically indistinguishable, and therefore may be assumed to be identical. 

Given that the forecasts and climatology are statistically indistinguishable after a specific 

time, then one can conclude that the uncertainty in the forecast is entirely a result of the 

forcing at future times. If the uncertainty is entirely a result of the forcing at any time in 

the forecast, then the initial drought conditions are completely alleviated, as they no 

longer affect the hydrologic conditions in the basin. Note that both the climatology and 

forecasts are based on the same models, and therefore the effects of model error will be 

negligible. Such an analysis requires a hypothesis testing framework to determine if the 

forecast ensemble is significantly different from climatology at each 10 day period over 

the forecast lead time. In this study, a two-sample Kolmogorov-Smirnov (KS) test is used 

to compare the two distributions (Wolfe and Myles, 1973), with an attempt to reject the 

null hypothesis that the forecast distribution is equivalent to climatology. Given that the 

analysis is unable to reject the null hypothesis, it will be assumed that the two 

distributions are equivalent, and therefore the forecast has entirely recovered from the 

drought conditions experienced at the initial forecast date. 

Hypothesis testing with the KS test relies on the construction of an empirical CDF of 

two distributions, which is described for the climatological ensemble in equation (61).  
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In equation (61), the 
c

BtF ,  is the empirical CDF of the climatology at time t , which is 

estimated over B  histogram bins distributed uniformly between the maximum and 

minimum value from the concatenated c

tLWS  and f

tLWS  arrays, N  is the number of 

ensemble members (30 for climatology), and btLWS , is the maximum LWS value for bin 

b  at time t . Note that this is performed similarly for the forecast ensemble, which will be 

use the notation 
f

BtF , . For the construction of both CDFs, B  is set equal to 530 as it is the 

total number of data points in the concatenated c

tLWS  and f

tLWS  arrays. 

After construction of the CDFs, the KS test examines the maximum absolute 

difference of the forecast and climatology CDFs across all bins, which then must be 

multiplied by the square root of the ratio of the product and sum of the forecast (M=500) 

and climatology (N=30) sample sizes, as shown in equation (62). 
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
             (62) 

From this equation, the two-sample KS statistic ( tD ) is estimated, which may be used for 

testing the null hypothesis. In this application, if  tD  is greater than 1.36, then the null 

hypothesis is rejected (with 95% confidence), and the forecast and climatological 

ensembles are considered different. At any time step in which the null hypothesis is not 

rejected, we can assume that the land surface conditions are not significantly different 

than climatology, thus showing that the basin is no longer experiencing drought 

conditions and completely insensitive to the initial drought conditions. 
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7.5.3 Quantifying Drought Recovery Rate 

The drought recovery study also seeks to estimate the rate of drought recovery. In 

order to estimate this rate, information theory provides a useful framework for examining 

the information provided by the initial drought states. Within information theory, entropy 

is a basic idea for examining the amount of information a probability distribution 

contains in respect to some random variable, which is typically estimated with Shannon 

Entropy (Shannon, 1948) (equation (63)).  
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In equation (63), J  is the number of LWS values at which the probabilities are 

estimated,  c

jtLWSp ,  is the probability of the LWS, according to the climatological 

ensemble, evaluated at time t  and value j ,   c

jtLWSp ,log  is the natural logarithm of 

that probability, and  c

tLWSH  is the entropy at time t . From this definition, entropy is 

inversely proportional to information content of a given probability density. Although the 

probabilities in equation (63) could be estimated from empirical distributions shown in 

equation (61), the small ensemble sizes will likely lead to biased entropy estimates 

(Miller, 1955), necessitating interpolation to regions of the LWS space unrepresented by 

the ensemble members. To ensure minimal bias, both the climatology and forecast 

ensembles are fit with a Kernel Smoothing Density to estimate the probability between 

ensemble members, as shown in equation (64) and (65). 
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In equation (64), N  is the ensemble size, jLWS is the value at which the probability is 

being estimated, h  is the smoothing parameter, K is the kernel, which is chosen here as 

Gaussian, and  c

jtLWSKS ,  is the corresponding Kernel Smoothing Density estimate at 

time t  and value j .  This density is then normalized according to equation (65) to 

estimate the probability at that location and time. The probability is estimated at 1,000 

values ( J ), uniformly distributed between the minimum and maximum values of the 

concatenated c

tLWS  and f

tLWS  arrays. The smoothing parameter is estimated from 

equation (66), which is the optimal value for a Gaussian kernel, where   is the standard 

deviation of c

tLWS . This operation may be performed similarly for the forecast ensemble 

to estimate the information contained in the forecast. 

5/1
5

3

4










N
h


               (66) 

Beyond simply quantifying the amount of information in the climatology and 

forecast ensembles, the goal here is to estimate the amount of information that the 

forecast contains in relation to climatology. An important note is that these two 

ensembles quantify the same variable (LWS). Therefore, this study seeks to quantify the 

relative information loss of the forecast in comparison to climatology, which will 

therefore estimate the rate at which the forecast loses information extracted from the 

initial drought states, referred to here as the drought recovery rate. Within this scenario, 
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the climatology has no information from initial drought status, but contains the same 

information with respect to meteorological forcing and model structure, and therefore 

contains the minimum information content that the forecast will achieve. As noted in 

equation (67), the entropy of the forecast distribution will be less than climatology at all 

times, except at the time when the forecast and climatology become identical. Note again 

that entropy is inversely proportional to information content. 

   f

t

c

t LWSHLWSH               (67) 

Since the entropy of the climatology will always be greater than or equal to the forecast, 

and the initial drought state is the only additional information source the forecast contains 

beyond the climatology, the fraction of the information extracted from the initial drought 

state by the forecast is equivalent to the ratio of the forecast and climatology entropies. 

This ratio is referred to as the relative entropy (RE), and is shown in equation (68). The 

RE (
tRE ) is ranges between 0 and 1, with 0 indicating all information in the forecast is 

derived from the initial drought conditions, and 1 indicating no information in the 

forecast is derived from the initial drought conditions. Therefore this study will estimate 

rate of change of the relative entropy, which requires a function to be fit to the estimated 

RE data points. 
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Estimation of drought recovery rate is made difficult by the non-linear nature of the 

RE metric. Due to this non-linearity, and the upper limit of 1 for the RE value, this study 

will quantify the drought recovery rate by fitting an exponential function to the time 
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series’ of RE. A simple yet effective function is equation (69), where the least squares fit 

is deemed sufficient (       
2

min tREt XfXRE ).  

 
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t
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1

1               (69) 

This function asymptotically approaches 1 for all positive n  values, with increasing 

values indicating a faster rate of drought recovery. Throughout the analysis of the results, 

the exponent in equation (69) will be used to quantify drought recovery rate. Equation 

(69) was chosen over other functions, specifically logarithmic or polynomial functions, 

because it produced the lowest squared error of the alternatives examined. 
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8 Results and Discussion 

8.1 Water Supply Forecasting 

 A first assessment of the results from the water supply forecasting experiment is 

provided with the weights of each model in Figure 3. This figure shows the average 

model weights from each forecast month, and the overall average weights, as estimated 

through the PF-SBC algorithm. In general, the NWS models appear to have the highest 

weights, indicating a higher accuracy in monthly probabilistic streamflow volume 

estimation, and more reliable estimation of streamflow uncertainty, than the VIC model. 

However, the VIC model cases were assigned high enough weights to provide a 

significant contribution in the model averaging framework. In comparing the DA and 

open loop cases, both DA cases in the NWS models received higher weight than the open 

loop model, yet the VIC model with DA received an overall lower weight than the open 

loop case. A general expectation is for the VIC model, which explicitly solves the energy 

balance to be more effective in estimating inputs to the radiative transfer model and LST, 

yet the application here does not support this hypothesis. Although the results suggest 

VIC is less effective for TB and LST DA than the NWS models, this is not a conclusion 

that should be drawn here due to the differing spatial discretization and calibration 

schemes. Another important note is the difference in performance of the two DA cases 

for each model. In the VIC model, the case of combined LST and TB DA outperforms 

the TB only DA case, but the NWS models perform best without the DA of LST. This is 

not surprising, as the VIC model explicitly solves for LST, whereas the SNOW-17 model 

only estimates average pack temperature, thus the VIC model should more accurately 
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estimate LST. Figure 3 also highlights an import temporal aspect to the performance of 

these modeling cases. In the DA cases, weights tend to be highest during the snow 

accumulation season (January, February, and March) and have lower weights into the 

ablation season (May, June). The reverse is true for the open loop cases. This finding is 

not surprising, due to the poorer sensitivity of microwave TB to SWE in deeper 

snowpacks with high liquid water content (DeChant and Moradkhani, 2011a). During the 

ablation season, the liquid water content in the snowpack remains high, reducing the 

ability of TB DA to accurately reconstruct SWE. Such temporal variation in DA 

performance necessitates the use of the PF-SBC methodology, as opposed to batch 

framework, to allow for dynamic weights, thus providing more accurate weights at each 

forecast initial condition. 
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 During the forecast phase, the ability of each modeling case to reliably estimate 

seasonal runoff volumes is assessed. From a risk management perspective, it is important 

to examine the accuracy of the tails of the forecast distributions, which may be used as 

maximum or minimum expected flows. In order to assess the tails of the forecast 

distributions, the 99%, 95% and 90% predictive bounds from each method are examined, 

with their respective ERs, in Figure 4. This figure suggests that every modeling scenario 

is overconfident at every predictive bound (each predictive bound is exceeded at a 

frequency higher than optimal). At the 99% predictive bound, each DA case reduces the 

overconfidence, highlighting the importance of initial condition uncertainty, and PF-SBC 

further reduces the ER to about 3%. This still remains slightly overconfident, yet is a 

significant improvement over the other modeling cases (the best ESP with DA case had 

14.9% ER), thus highlighting the importance of accounting for model errors. At the 95% 

and 90% ERs, DA continues to improve overconfidence, with the exception of VIC with 

TB only DA, and PF-SBC again performs best overall. These results suggest that across 

the entire basin, both ESP with DA and ESP with PF-SBC improve the reliability of the 

tails of the forecast distributions, but provide no assessment of the performance spatially. 

In order to examine the performance of the methods across several sub-basins, Figure 5 

shows the 99% ER of 16 different sub-basins within the UCRB. 
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 The accuracy of the 99% predictive bounds varies spatially throughout the UCRB. 

In the VIC open loop model, the San Juan is the only basin that has an ER of lower than 

50% (optimal is 1%), which shows that the probabilistic forecasts does not convey the 

actual magnitude of uncertainty. In the DA cases, a reduction in the 99% ER is observed 

in every sub-basin outside of the Colorado River headwater region. In this region, DA 

appears to struggle in improving the accuracy of initial conditions, which is an 

observation that will be discussed further in relation to later results. The NWS models 

perform much more consistently throughout the UCRB, with ERs generally around 50%, 

and greater variability in the Rocky Mountains. In the NWS DA cases, the ER is reduced 

in all basins, suggesting generally more reliable forecasting of low probability events. DA 

in these models appears to be more consistently effective than in VIC, which is attributed 

to the differing spatial discretization, as mentioned in respect to model weights from 

Figure 3. Finally, PF-SBC further reduces the ER, from which values are consistently 

below 10%, with the exception of the Dolores River Basin (southwestern sub-basin of the 

Colorado River headwater region) at around 20%. Overall this shows that DA tends to 

improve probabilistic prediction, highlighting the importance of initial condition errors, 

and further improvements are made through PF-SBC, showing the importance of the 

model error component. Though the results here are encouraging, it is important to also 

look at the overall reliability of the forecast distributions to ensure that reliability of the 

entire forecast distribution is improved. This is performed with the R metric and is shown 

spatially in Figure 6. 
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 In the VIC open loop case, reliability is low in the Green River Basin and in the 

Colorado Headwaters, with better performance in the San Juan and at Lee’s Ferry, which 

suggests a more accurate reconstruction of initial states in the San Juan than the other 

sub-basins. In the two DA cases, reliability is improved in both the Green and San Juan 

basins, but the performance is worse in the headwater basins, similar to the results of the 

99% ER. Both DA cases improved the initial condition distribution in the Green and San 

Juan basins, yet struggled in the Colorado River headwaters. In contrast to the VIC 

model, the NWS models have less variation in reliability, and no identifiable pattern in 

performance. Also, the DA cases only show improvements in the San Juan River basin, 

with slightly worse performance in many other basins. This observation is unexpected in 

light of the improvements shown in figures 4 and 5. Such an observation suggests that the 

ESP with DA method is unable to improve the central portions of the predictive 

distribution. Despite an improvement in the tails for the forecast distributions from the 

DA cases, the mode of the distribution is not shifted enough to observe general 

improvements in reliability. Results from the PF-SBC experiment show that the model 

averaging scenario is superior to all other cases in the majority of basins, though 

exceptions are present in the upper Green river basin and central Gunnison river basin 

(south-central portion of the Colorado River headwaters). The superior results from PF-

SBC over the entire forecast distribution, in conjunction with unimproved total reliability 

from DA, suggests that model errors are persistent in the central portion of the forecast 

distribution. While the initial condition errors were important in estimating the low 
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probability events, it is essential to manage model error for accurate prediction of the 

mode of the forecast distribution. 
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 The conflicting results regionally, and within different portions of the forecast 

distributions, requires further examination of the regional forecast distributions. The 

causes of conflicting information from previous results are diagnosed with the predictive 

QQ plot from each of the four gauges shown in Figure 1, which are provided in Figure 7. 

In the upper left plot of Figure 7, it appears that both the NWS models and the VIC 

model have significant biases, with the NWS models showing a generally high bias 

(observations primarily falling in the lower portions of the forecast distributions) and the 

VIC model having a generally low bias (observations primarily falling in the higher 

portions of the forecast distributions). In the NWS models, DA does not change the bias, 

though it does move the tails of the distribution to encompass more observations, but the 

VIC model has increasingly low bias with DA. These differing results highlight the 

effects of spatial resolution on TB DA in regions of highly complex topography and thick 

vegetation. From Figure 1, it is apparent that the Colorado River headwaters is the most 

topographically rough sub-basin, and has the densest forest cover of all regions, causing 

greater problems for DA in the VIC model. Since the NWS models are distributed based 

on topography, the basins in this region are much smaller than in the VIC model, and thus 

the spatial heterogeneity is more effectively modeled. Conversely, in the Green River, the 

bias in the VIC model was reduced through DA, but again only little change was 

observed in the NWS bias in the DA case. In the San Juan, which has the lowest density 

of forest cover and driest climate, the bias in both models is reduced, showing the ability 

of TB DA to reduce SWE errors in regions of thin vegetation and dry climates. With 

respect to the PF-SBC case, the forecasts in the headwaters have a high bias, generally 



www.manaraa.com

90 

 

following the NWS model forecasts, but in the Green and San Juan basins, PF-SBC 

provides a significant reduction in model bias. In basins where both models provide 

sufficiently accurate forecasts, PF-SBC is capable of effectively leveraging information 

from multiple model structures to improve forecasts, but the poor forecasts from VIC in 

the headwaters forces PF-SBC to rely primarily on the NWS modeling cases. Results at 

Lee’s Ferry indicate the strong influence of the Colorado River headwaters in flow at the 

outlet (on average it provides 45% of the runoff at Lee’s Ferry), which is unfortunate 

because forecasts for the headwaters are the least skillful, and show the least sensitivity to 

the remotely sensed observations. Overall it appears that the tails of the forecast 

distributions at Lee’s Ferry are most accurate when using the ESP combined with PF-

SBC, but this framework is unable to provide much improvement in the mode of the 

forecast distributions outside of the San Juan and Green River basins. 



www.manaraa.com

91 

 

 



www.manaraa.com

92 

 

8.2 Probabilistic Verification of Binary Outcomes 

The results presented in this section are intended to highlight flaws in the typical 

reliability assessment of probabilistic hydrological event forecasts. With this purpose, 

Figure 8 is presented to show how the decomposed BS and reliability diagram assess the 

reliability of the synthetic forecast cases. In Figure 8, the left plot shows the distribution 

of reliability values, estimated with the decomposed BS, from 100 replicates of all three 

synthetic experiments described in Chapter 7.2, each with 10 bins. When comparing 

these distributions, it is clear that forecast uniformity affects the reliability estimation. 

Case 1 is shown to have a generally lower reliability score (0 is optimal) than the 

forecasts that deviate from uniform. Though use of 10 bins is quite common in the 

literature, the bin size is not small enough to eliminate the effects of forecast uniformity 

on diagnosing reliability, which may cause misinterpretations of this score. Case 1 may 

be observed as the best case from this analysis, yet it is the worst case given the 

knowledge that each is reliable (Case 1 is the least sharp). Alternatively, the reliability 

diagram (right subplot) shows that each forecast tends towards reliability, but the current 

diagram is not capable of making the distinction that all forecasts are reliable. Although 

Case 2 may be noted as questionable, as it has a large deviation within the bin centered at 

0.25, all bins are entirely within the statistical variability of this forecasting scenario. In 

general, Figure 8 suggests that these metrics are useful tools for diagnosing forecast 

errors, but fall short of distinguishing between reliable and unreliable forecasts. 



www.manaraa.com

93 

 

 



www.manaraa.com

94 

 

Errors associated with applying the Binomial (B-CDF) and Poisson Binomial 

(PB-CDF) CDFs for hypothesis testing are quantified through comparison of the 

significance intervals from each, as provided in Figure 9. In Figure 9, the 95% interval 

widths for a varying number of forecast bins are presented in the top row. In addition, the 

middle row shows the histogram of the forecast probabilities for each case, and the 

corresponding PDF of the approximate and exact solutions, for the case of a single bin, 

are presented in the bottom row. This figure clearly shows that the B-CDF is wider than 

the PB-CDF, with that difference being dependent on the uniformity of forecasted 

probabilities. A wider distribution suggests that the binomial approximation reduces 

one’s ability to reject the hypothesis of reliability, thus increasing the possibility of type 

II errors. This error is largest in Case 3, which happens to be the sharpest case. Given that 

all forecasts are reliable, Case 3 would be optimal. In the event that Case 3 is unreliable, 

it is the most probable to be erroneously deemed reliable, increasing the likelihood of 

incorrectly selecting Case 3 as the best forecast. 

A second observation from Figure 9 is the rapid growth of 95% range with the 

number of forecast bins. Since the grouping process reduces the sample size at each bin, 

the 95% significance interval is widened, causing an aggregate effect on the overall 

determination of reliability. By binning similarly valued forecasts, one vastly reduces the 

ability to distinguish between reliable and unreliable forecasts, further increasing the 

chance of Type II errors. This problem is especially concerning in the case of 

hydrological extremes (i.e. floods, droughts), which are inherently low probability events, 

making it essential to efficiently use information from every observation. Overall it is 
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important for forecasts to be verified with as few bins as possible, increasing the effective 

sample size, maximizing one’s ability to reject unreliable forecasts. 

A final observation from Figure 9 is that forecast uniformity affects error magnitude. 

It may be expected that errors in the B-CDF will decrease inversely with the number of 

forecast bins, as each bin becomes more representative of its members. This is evidenced 

in Case 1, where the B-CDF approaches the PB-CDF with decreasing bin size. 

Alternatively, the B-CDF in Case 2 and Case 3 has persistent error even with 10 bins. 

Rather than approaching the true value, the non-uniform cases display errors nearly 

independent of bin size. This result suggests that grouping may not significantly reduce 

the errors associated with the B-CDF. A much simpler and more effective solution is to 

utilize the PB-CDF in attempts to reject the hypothesis of reliability. In addition to this 

analysis of probabilistic verification measures, further analysis is provided in section 8.3, 

with the application of the proposed drought forecasting approach in the UCRB. 



www.manaraa.com

96 

 

  



www.manaraa.com

97 

 

8.3 Drought Forecasting 

The examination of the proposed drought forecasting methodology begins with an 

analysis of the method’s ability to deterministically forecast drought. As discussed in 

section 6.2.1, the POD, FAR and CSI are used in this study to examine the performance 

of the proposed methodologies for deterministic forecasting. These values are estimated 

for each forecast method at multiple lead times, as shown in Table 1. From this table, 

several observations are made. First, the VIC model based forecasts have highest POD 

and FAR values for every forecast scenario. This suggests that the implementation of the 

VIC model in this study has a generally low bias. In addition, the NWS models based 

forecasts have the lowest POD and FAR in all cases, suggesting a generally high bias. 

Both of these points are supported by results from the water supply forecasting 

experiment. In terms of overall comparison of forecast performance, the CSI is examined 

here because it is maximized as POD approaches 1 and the false alarm ratio approaches 

0. In addition to Table 1, the CSI of each method and lead time is presented graphically 

in Figure 10. With respect to the CSI, the DA cases improve upon the open loop 

simulations in nearly every forecast, with the exception of the 1
st
 month for the NWS 

models. Further, the combined assimilation of TB and LST leads to an improvement in 

over TB only assimilation in every model and forecast month. This contrasts slightly with 

results of the water supply forecasting experiment, as the NWS models were found to 

perform best with assimilation of TB only. LST assimilation appears to reduce the high 

bias of the case of TB only assimilation, which is found to be detrimental in water supply 

forecasting, yet beneficial in drought forecasting. A further finding is that the PF-SBC 
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case provides the most accurate drought forecasts of all cases, at all lead times. This 

suggests that model error is a significant factor in monthly to seasonal drought 

forecasting in the UCRB. By reducing the errors related to both initial conditions, via 

DA, and the model structure, through multi-modeling, the forecast improvements are 

achieved in terms of CSI. 
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Table 1. Probability of Detection (POD), False Alarm Ratio (FAR) and Critical Success 

Index (CSI) of the deterministic drought forecasts from all seven forecasting techniques. 

1
st
 Month POD FAR CSI 

NWS_TB_LST 0.3929 0.2771 0.3415 

NWS_TB 0.3694 0.2304 0.3326 

NWS_OL 0.4800 0.3761 0.3723 

VIC_TB_LST 0.8235 0.5853 0.3808 

VIC_TB 0.8188 0.5930 0.3734 

VIC_OL 0.6000 0.5039 0.3728 

PF-SBC 0.5341 0.3401 0.4188 

    
2

nd
 Month POD FAR CSI 

NWS_TB_LST 0.4265 0.2281 0.3787 

NWS_TB 0.4160 0.2016 0.3764 

NWS_OL 0.4139 0.2566 0.3621 

VIC_TB_LST 0.8193 0.5618 0.3996 

VIC_TB 0.7878 0.5758 0.3807 

VIC_OL 0.5714 0.5152 0.3556 

PF-SBC 0.5525 0.3308 0.4340 

    
3

rd
 Month POD FAR CSI 

NWS_TB_LST 0.4649 0.2643 0.3984 

NWS_TB 0.4497 0.2452 0.3924 

NWS_OL 0.4421 0.2741 0.3789 

VIC_TB_LST 0.8121 0.5452 0.4115 

VIC_TB 0.7628 0.5563 0.3899 

VIC_OL 0.5237 0.5166 0.3358 

PF-SBC 0.5655 0.3843 0.4180 
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Probabilistic forecast verification in this study begins with the results in Table 2, 

where the reliability, as estimated from the decomposed Brier Score, the number of 

significant bins from the Reliability Diagram (95% confidence), and the CDF values 

from the B-CDF and the PB-CDF are presented. The reliability metric and number of 

significant bins highlight the assessment of drought forecast reliability through a binning 

approach, and the B-CDF and PB-CDF values show how the probabilistic forecasts can 

be evaluated as a single group. A few important observations about the accuracy of the 

forecast methods, and the accuracy of the verification measures, are apparent from Table 

2. 
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Table 2. Reliability (from the decomposed Brier Score), the number of significant bins 

from the reliability diagram, and the CDF values from the Binomial (B-CDF) and 

Poisson-Binomial (PB-CDF) distributions. 

 
Binning Methods CDFs 

1
st
 Month Reliability Bins B-CDF PB-CDF 

NWS_TB_LST 0.069 4 1.00 1.00 

NWS_TB 0.058 6 1.00 1.00 

NWS_OL 0.035 4 0.96 0.99 

VIC_TB_LST 0.451 3 0.00 0.00 

VIC_TB 0.422 3 0.00 0.00 

VIC_OL 0.228 3 0.00 0.00 

PF-SBC 0.033 4 0.36 0.29 

  
   

 
Binning Methods CDFs 

2
nd

 Month Reliability Bins B-CDF PB-CDF 

NWS_TB_LST 0.057 2 1.00 1.00 

NWS_TB 0.060 3 1.00 1.00 

NWS_OL 0.046 4 1.00 1.00 

VIC_TB_LST 0.349 3 0.00 0.00 

VIC_TB 0.350 3 0.00 0.00 

VIC_OL 0.281 1 0.00 0.00 

PF-SBC 0.035 5 0.61 0.62 

  
   

 
Binning Methods CDFs 

3
rd

 Month Reliability Bins B-CDF PB-CDF 

NWS_TB_LST 0.064 1 1.00 1.00 

NWS_TB 0.066 3 1.00 1.00 

NWS_OL 0.054 4 1.00 1.00 

VIC_TB_LST 0.307 2 0.00 0.00 

VIC_TB 0.340 3 0.00 0.00 

VIC_OL 0.338 1 0.01 0.00 

PF-SBC 0.051 2 0.79 0.83 
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A first observation from Table 2 is that the binning methods often disagree. In the 

first month, the VIC_TB case has the greatest number of significant bins of all forecast 

cases and lead times. Conversely, the PF-SBC case produces the lowest reliability 

(optimal is 0) score of all cases during this forecast month. Further, the PF-SBC has the 

lowest reliability score of all cases at each lead time, but only produces the greatest 

number of significant forecast bins during the second forecast month. To explain this 

incongruity, the reliability diagram for the first month forecasts are presented in Figure 

11. In this figure, the VIC_TB case is shown to have six forecast probability bins falling 

within the 95% significance envelope, yet has outliers at lower forecast probabilities. 

While a large portion of the reliability diagram may fall within the significant envelope, a 

few outliers can adversely affect the reliability score, as it is the mean square error from 

the 1:1 line. With respect to the PF-SBC case, less than half of the forecast bins fall 

within the significant envelope, yet the PF-SBC produces a reliability diagram that is 

closer to uniform than the VIC_TB case, leading to a lower reliability score. This 

observation that both binning metrics typically disagree suggests that at least one metric 

is suboptimal. Further examination requires the use of all forecasted probabilities 

simultaneously to maximize the information from the observations. 
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The B-CDF and PB-CDF values also differ in their assessment of reliability, but 

not to the extent of the binning methods. With respect to these scores, a value closer to 

0.5 is optimal (the observed number of droughts is closest to the forecasted expected 

value), but the values should be interpreted from a hypothesis testing viewpoint. As 

explained in section 6.2.2, if the CDF value is outside of the 2.5% and 97.5% envelope, 

the hypothesis of reliability is rejected, otherwise the forecast must be assumed to be 

reliable. From Table 2, the B-CDF suggests that 4 forecast scenarios are reliable, whereas 

the PB-CDF suggests that only three are reliable. This result is consistent with those 

presented in section 8.2, where it was shown that use of a Binomial approximation 

decreases one’s ability to reject an unreliable distribution, potentially leading to type 2 

errors. The reason for this discrepancy is highlighted in Figure 12, where histograms of 

the forecasted probabilities are shown for the first month drought forecast. In this month, 

these forecast probability distributions display a U-shaped pattern, which reduces the 

accuracy of the Binomial approximation. Note that the Binomial approximation 

approaches the exact solution as the forecasted probabilities approach the same value 

(e.g. climatology), but this also minimizes the sharpness of the forecast. Here it is 

suggested that the PF-SBC is the only case which produces reliable probabilistic 

predictions, reliably forecasting drought probabilities in all months, based on the analysis 

of the PB-CDF. In the event that both the PF-SBC and the VIC_OL model were both 

deemed reliable, as would be the case if the Binomial approximation were relied upon for 

the first month, the VIC_OL method would be competitive with the PF-SBC method, as 

both meet the reliability requirements according to the B-CDF. Since both the VIC_OL 
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and PF-SBC have similar forecast variances (see Figure 13), it is likely that the VIC_OL 

would be selected for one month forecasting over the PF-SBC method based on the B-

CDF value, due to its simpler design. This conclusion is clearly erroneous from the exact 

solution to the reliability condition. In light of this clear error resulting from the B-CDF 

value, it is suggested that that the PB-CDF value be used in future studies. 



www.manaraa.com

107 

 

 



www.manaraa.com

108 

 

The prior examination of the forecast cases with the PB-CDF highlights some 

important issues related to the use of binning metrics. First, a reliable forecast, according 

to the PB-CDF will not necessarily occupy the significant envelope for all forecasts bins. 

This is somewhat surprising, but one may realize that the PB-CDF is primarily related to 

overall bias, whereas the binning approach can assess over/under confidence. Although 

the PF-SBC method is reliable from the PB-CDF values, it is clearly outside the 

significant envelope for multiple bins, and therefore may not be reliable at all 

probabilities. This hints that reliability assessment may be more effectively performed 

with a combination of single and multiple bin assessments, to determine if the forecast 

falls in the significant envelope for all bins. In this scenario, one will utilize a single bin 

scenario to maximize the ability to reject the reliability hypothesis, but also rely on a 

multiple bin approach to ensure that the model is reliable at each forecast group as well.  

Another interesting note is that Table 2 suggests that the reliability score generally 

agrees with the PB-CDF on which forecast has the highest probability to be reliable. This 

verifies that the normal approximation assumed in the BS is reasonable, but it is 

ambiguous in distinguishing between reliable and unreliable forecasts. Two clear 

examples are observed in the first and third months. In these months, the NWS_OL and 

PF-SBC cases produce similar reliability, yet clearly differ in their location within the 

PB-CDF. Further, the NWS_OL case has a lower reliability score during the first forecast 

month than the PF-SBC has during the third month, yet the PF-SBC is deemed reliable 

from the PB-CDF in each month, and the NWS_OL case is not. Since there are no clear 

guidelines for distinguishing between reliable and unreliable forecasts based on the BS, 
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interpretations of this metric will often lead to over emphasis of sharpness, which is 

similar to the finding from the synthetic experiment. 

Based on the observed location within the PB-CDF from each forecasting case, it 

appears that the NWS models forecast drought too infrequently, the VIC model forecasts 

drought too often, and the PF-SBC forecasts transition from over-forecasting to under-

forecasting drought frequency with lead time. These results are consistent with the 

findings from the water supply forecasting experiment, where the NWS models were 

found to have a high flow bias, and the VIC models was found to have a low flow bias. 

With respect to the transitioning bias of the PF-SBC case with lead time, it is likely that 

the high bias is a result of losing sensitivity to the initial conditions over time. Since the 

model is forced with climatological data, the forecasts will approach climatology with 

sufficient lead time, which is the point at which sensitivity to initial conditions is 

negligible. Given that climatology is used as forcing during the forecast period, drought 

frequency will be under-forecasted with sufficient lead time, as the entire study period is 

drought prone in comparison to the sampled climatological data. Though the lead time at 

which the model loses sensitivity to initial conditions is not quantified here, it appears 

that the effects of approaching climatology may begin to occur in as short as three 

months. This is further evidenced by a reduction in the sharpness with time as shown in 

Figure 13. From Figure 13, it is clear that the first month forecast from the PF-SBC is the 

sharpest forecast of the three months, and is therefore the best forecast given that all three 

months are forecasted reliably. The sharpness decreases over time, indicating increasing 

uncertainty as the model approaches climatology. This analysis provides a simplistic 
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analysis of forecast sensitivity to initial conditions, but this is examined in detail in 

section 8.5. A final finding from Figure 13 is that the PF-SBC forecast is generally the 

least sharp, which is due to a more complete accounting of uncertainty. Although it is 

unfortunate that the best forecast is the most uncertain, this is the most honest accounting 

of uncertainty, and therefore should be chosen as best of all cases presented. 
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8.4 Assessing the Need for a New Drought Index 

A specific example of the errors associated with spatial analysis of standardized 

indices is examined with simulations of land surface water states via the VIC model over 

the UCRB. This example compares the absolute value LWS with the SLWI. Over the 

entire UCRB, the LWS and SLWI are averaged spatially, and the corresponding time 

series are plotted in Figure 14. 
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The LWS and SLWI in Figure 14 show similar long term patterns, reflecting the 

relationship between the absolute and standardized values. Although these two time 

series’ show similar long term trends, there are two specific differences that may be 

observed. First, the LWS shows the annual fluctuations, whereas the standardized index 

removes these fluctuations by estimating drought intensity with respect to monthly 

climatology. A second and more important difference is the location of the minimum 

value, which should correspond to the worst drought over this time period. From this 

figure, it is apparent that the LWS and SLWI disagree on the most intense drought in this 

basin. While the LWS indicates that lowest basin water storage during this time period 

occurred around 1990, the SLWI indicates the worst drought occurred around 2002. The 

average LWS clearly corresponds to the driest overall time, as it is an absolute measure 

of basin water storage, but this is improperly identified by the SLWI due to the 

standardization process. By viewing drought through a historical perspective, some 

information about overall dryness is lost. Since the LWS and SLWI are based on the 

same data, the standardization process is identified as causing errors in the analysis of 

basin-wide drought. This is primarily a result of errors in the standardized methodology 

in a region of spatially variable water states. 

The spatial distribution of water within the UCRB is primarily related to 

elevation, as shown in Figure 15. In this figure, the relationship between the normalized 

mean LWS ( iS ) and elevation percentile (i) of each model grid cell is presented, as 

shown in equation (64). In equation (64), tiS ,  is the LWS for cell i at time t, where T is 

the total number of time steps of data available, which is normalized by dividing the 
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cumulative mean LWS values (


i

j

jS
0

) by the maximum cumulative mean cell LWS 

value (


N

i

iS
1

) in equation (65), where N is the total number of grid cells. Similarly, the 

cell LWS variance ( iŜ ) is estimated according to equation (66), and the cumulative 

normalized variance is estimated by equation (67). In order for spatial analysis with 

standardized indices to be optimal, the basin water will need to be uniformly distributed, 

which is shown with the dashed line in Figure 15. In the UCRB, the actual relationship 

between average LWS increases non-linearly, as noted by the solid blue line. From this 

figure, it is clear that the majority of water storage is located in the highest elevation 

regions. For example, in examining the 70
th

 cell elevation percentile, the corresponding 

average LWS is roughly 40%, suggesting that 60% of the water storage in the UCRB is 

in the highest 30% of the basin area. Further, the standardized variability in water storage 

is presented in the lower subplot of Figure 15. Similar to basin average water storage, the 

variability in water storage is spatially distributed, with a majority of the basin water 

variability being controlled by the highest elevation regions. Given this environment, the 

lower elevation regions are given too much weight through the standardized process, 

because standardized indices inherently assume uniform distribution of water, thus small 

deviations from the average in these grid cells have a disproportionately large impact on 

drought analysis. 
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 A comparison of the MSMI with the SLWI is provided in figures 16 and 17. 

These figures show the spatial distribution of each drought index during May of 1990 

(Figure 16) and 2002 (Figure 17). These two months were chosen to correspond to the 

minimum spring basin water storage (May 1990) and minimum spring SLWI (May 

2002). From Figure 16, it is important to note the generally similar values of MSMI 

throughout the interior portions of the basin, whereas the SLWI indicates a variety of wet 

and dry states in this region. Such consistency throughout the interior portions in the 

MSMI suggests that the little variability exists in the LWS throughout this region. From 

this finding, it is clear that the SLWI is highly sensitivity to small changes in water 

storage. Since the SLWI is standardized by climatology, and LWS has little variability in 

dry climates due to generally low precipitation and high evaporation rates, slight shifts in 

the LWS throughout the interior portion of the UCRB reflect large variability spatially. 

This observation is important for understanding problems associated with standardized 

indices. 

Further analysis of the errors associated with SLWI is performed by comparing 

Figure 16 and Figure 17. In contrast to the high spatial variability of drought found with 

the SLWI in May of 1990, SLWI in May of 2002 more consistently indicates drought 

throughout the interior portions of the basin, but the MSMI only shows slightly drier 

status. These low elevation regions receive equal weight from the SLWI when analyzing 

basin-wide drought, yet the MSMI suggests that these regions have little impact on total 

basin water storage. Figure 17 also indicates wetter than average conditions in the far 

northern portion of the basin from both indices. This region receives a much larger 
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portion of precipitation than the interior portions, and therefore may make up for the drier 

conditions further south in the basin. When comparing the MSMI between 1990 and 

2002, it appears that much of the outer portions of this basin, which are the higher 

elevation regions, tend to contain more water during 2002 than 1990. Although a general 

pattern is not apparent from the SLWI in these regions, the MSMI indicates that this 

regions stored more water during 2002, thus making up for the minor deficits in the lower 

elevation regions. Although the SLWI suggests a more intense drought overall in 2002, 

as compared to 1990, this is likely incorrect as the MSMI indicates generally greater 

LWS throughout the basin in 1990 than 2002. This scenario indicates that standardized 

indices may be misleading, and that the use of a physically-based index has potential to 

advance drought monitoring. 
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Problems with the analysis of standardized indices may also be observed when 

utilizing advance modeling techniques, such as DA, due to the ability of these techniques 

to push hydrological states away from a model’s own climatology. In order to examine 

this issue, Figures 18 and 19 are presented to compare the SLWI and MSMI estimated 

from model simulations and DA. These figures show the spatial distribution of drought 

within the UCRB during May of 2004. Starting with a comparison of model estimations 

of SLWI, with and without DA, Figure 18 shows is a stark contrast between the two 

subplots. In this figure, the SLWI without DA is spatially consistent, having few grid 

cells showing extreme drought or excess water. Alternatively, when using DA, the SLWI 

shows significant variability in the central portion of the basin, and many cells at the 

extremes. This is evidence that the application of standardized indices is problematic 

when using DA. Since the SLWI is tuned to the model specific climatology, a 

theoretically more accurate estimation of LWS may actually be incorrect in relation to the 

historical model distribution. The errors in the model are persistent in the climatology, 

and are therefore existent when examining the SLWI with the improved states from DA. 

Given this scenario, it may be advantageous to use a physically-based index, leading to 

improved drought characterization with increasingly accurate hydrological state 

estimation. 

Figure 19 shows that the MSMI is much more consistent with and without DA 

than the SLWI. In the no assimilation case, the MSMI shows excess water in the far 

northern and eastern portions of the basin, with drier regions in the north-central and 

southern portions. After application of DA, the water storage in the northern and eastern 
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portions is less wet, and conditions are slightly drier in the interior portions of the UCRB. 

Unlike the SLWI, the DA case is still a reasonable estimate of the conditions, as it is 

bound by physical principles and not model climatology. This shows that a physically-

based drought index may be more useful when comparing results from model simulations 

and DA. With a greater applicability to DA estimated states, physically-based indices 

may become a vital part of drought analysis, as DA systems become increasingly 

common in operational drought monitoring systems. 
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8.5 Sensitivity of Droughts to Initial Conditions 

8.5.1 Forecast Initial Conditions 

The time period from October 1
st
, 2003 through September 30th 2008 was marked 

by frequent drought conditions, making this a prime study period for analysis of drought 

forecast recovery. With these persistent drought conditions, the LWS for each forecast 

date is below average, as shown in Table 3. In this table, the spatially averaged LWS 

initial condition expected value from the climatological distribution and assimilation of 

TB and LST into the VIC model is presented. This table clearly shows that LWS from 

assimilation, at each forecast initialization date, is below the average climatological 

value, indicating drought conditions. Of these years, 2007 was found to be the worst 

drought for April over the entire basin, and 2006 was found to be the worst drought for 

July over the entire basin. Alternatively, the least intense drought year was 2003 for April 

and 2005 for July. The time for complete recovery from such droughts is of great 

importance for understanding drought processes and forecasting, and the remainder of 

this results in this dissertation will seek to quantify the recovery time from these 

droughts, and the rate at which drought recovers. 
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Table 3. Basin-wide average land water storage initial condition, in mm, for climatology 

and each year, from each forecast starting date. 

Year April 1
st
 July 1

st
 

Climatology 190.62 118.00 

2003 172.50 85.71 

2004 137.35 87.76 

2005 155.10 104.32 

2006 125.85 73.86 

2007 117.32 82.66 

2008 132.31 84.60 
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An initial examination of the forecasts from each start date is provided in Figures 

20 and 21. In these figures, the spatially averaged median (dotted line) and 95% 

predictive bounds (solid lines) are shown for the forecast (red line) and climatology (blue 

line). This representation shows the progression of reducing forecast bias, and increasing 

width of the 95% predictive bounds, as climatology is approached. This indicates a slow 

loss of sensitivity to the forecast initial conditions, which is highly dependent on the 

drought intensity at the initial forecast date. For example, forecasts starting from each 

month in 2005 clearly approach climatology, and are indistinguishable from climatology 

by the end of the 360 day forecast. In addition, the 2005 forecasts approach climatology 

in a much shorter lead time than all other forecasts, due to the proximity of the initial 

states to the climatological average. Alternatively, the forecast mean and 95% predictive 

bounds from April of 2007 do not appear to completely match climatology even at 360 

days, which indicates an extended length of memory in the UCRB to initial conditions. 

Similar observation may be made from the July 2006 forecast, where the forecast 

required greater lead time to approach climatology than all other years. From a qualitative 

standpoint, Figures 20 and 21 are very informative of the behavior of forecasts initialized 

at different drought intensities, but more detailed analysis requires the use of quantitative 

measures. As described earlier, the measures used here are the KS test and the RE. 
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8.5.2 Kolmogorov-Smirnov Test 

The lead time at which the basin-wide LWS forecast ensemble becomes 

equivalent to climatological ensemble is quantified with the spatially averaged LWS 

forecasts, based on the results presented in Figures 20 and 21. Through the KS test, the 

time at which the spatially averaged forecast and climatology become statistically 

inseparable is estimated, and is presented in Figure 22. In this figure, the region shaded in 

black indicates that the distributions are significantly different, and the white region 

indicates that the forecast and climatology are statistically indistinguishable. Therefore, 

the time at which the figure transitions from black to white is the drought recovery lead 

time. 
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From Figure 22, it is clear that the magnitude of LWS deficits at the initial 

forecast date affect the lead time required for recovery. For example, in 2005, forecasts 

starting in both April and July have their shortest time to recovery, about 6 and 3 months 

respectively, but display their longest recovery time in 2006, at around 9 months for both. 

Such a finding is intuitive, as increasingly severe droughts are expected to have 

increasingly long recovery times. Overall Figure 22 suggests that spatially averaged LWS 

may take between 6 and 9 (3 and 9) months to recover from the drought conditions 

observed in April (July). These results suggest different sensitivities to initial conditions 

than previous studies. From conclusions in previous studies, one would likely assume that 

drought conditions in April would persist for a maximum lead time of 6 months (Shukla 

et al., 2013), while drought conditions in July would persist for a maximum lead time of 

around 3 months (Paiva et al., 2012). Interestingly, the maximum lead time of initial 

condition influence estimated from previous studies is similar to the minimum drought 

recovery time determined here. These differing results are explained by the varying 

perspectives between this study and previous studies. While previous studies examined 

the relative influence of initial conditions and forcing, this study quantified the lead time 

at which the initial conditions have no influence. This distinction is important for 

examining both drought recovery time, and the benefit of improving initial conditions in 

hydro-meteorological forecasts. 

More detailed analysis of drought recovery lead time is performed by viewing 

spatial patterns of recovery time. Figures 23 and 24 show the spatially distributed drought 

recovery lead times for the forecasts originating from April and July, respectively. A first 
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observation from these maps is the extent of the basin which requires nearly the entire 

360 day forecast period to recover (shown in red). For forecasts originating in both April 

and July, large regions in the interior of the UCRB are in deficit conditions throughout 

the 360 day lead time, with more intense drought years displaying greater recovery time. 

These interior regions are among the driest portions in the basin, and therefore this 

scenario may be explained by the difficulty of recovering from a drought when 

precipitation is sparse even during average climatic conditions. Alternatively, the 

northern and western portions of the UCRB have among the shortest drought recovery 

lead times, with some regions reaching climatology within a few months. Due to the 

increased precipitation in these regions, and the magnitude of typical snow water storage 

in relation to soil moisture, drought recovery can be quite rapid. Since the LWS in these 

regions is dominated by snow, it is unlikely that a drought could take more than one year 

for recovery under normal climatic conditions, due to near complete melt every year, 

resulting in a clean start after every summer. Alternatively, the LWS in the central 

portions is dominated by soil moisture, and therefore the memory in this region has the 

potential to be much longer, as the soil moisture will never reach zero. 
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Further patterns may be observed when comparing April and July forecasts. From 

Figures 23 and 24, it is clear the July forecasts tend to have shorter drought recovery 

times in the southern portion of the UCRB, but longer drought recovery times in the 

northern portion, as compared to the April forecasts. This issue likely has less to do with 

initial drought status as it does with normal precipitation timing in the central portions of 

the basin. Although the northern and higher elevation regions receive the vast majority of 

precipitation during the winter, the southern and interior portions receive a slightly larger 

portion of precipitation during the summer than in the winter, and therefore some regions 

have faster recovery times in July than April. An important note here is that this study 

assumes normal climate conditions over the forecast period, but in the central regions of 

this basin that assumption is potentially violated. Since much of the summer rains in this 

basin are due thunderstorms resulting from moisture emanating from the North American 

Monsoon (Adams and Andrew, 1997), and moisture over southern portions of the basin 

and Arizona affecting atmospheric feedbacks (Feng et al., 2013), drought recovery time 

estimated for the south-central portion of the UCRB in this study may be very 

conservative. More robust analysis would require a coupled land-atmosphere model, 

which is outside the scope of this study, as the predominant source of water in the UCRB 

is the winter and spring westerly storm pattern. 

8.5.3 Rate of Information Loss 

This manuscript has examined the recovery time from different drought 

conditions, but to further the analysis, it is important to understand the rate at which 

drought recovers. Whereas the time for drought recovery is highly dependent on drought 
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intensity at the initial forecast date, the rate of drought recovery reduces the reliance on 

drought initial conditions. An example of this point is displayed in Figure 25. In this 

figure, the RE of the spatially averaged LWS is plotted, with respect to time, and a line is 

fit to the data points from equation (69). From these results, it is clear that the variance in 

the rate of drought recovery is relatively constant, as the fitted lines differ only slightly 

from year to year. In addition, the rate of recovery shows very little variance with respect 

to start date, as shown in Table 4. All spatially averaged LWS RE functions had an 

exponent between 0.57 and 0.6, yet spatially distributed calculations ranges from 0.2 to 

0.9 (Figure 26). From Figure 26, April forecasts tend to have slightly larger variance in 

drought recovery rates, but overall the variability seems greater spatially than with 

respect to initial forecast date. In addition, the distributions of recovery rates from Figure 

8 have similar qualities, with an exponent value of around 0.45 having the greatest 

frequency in each month, and each distribution being positively skewed. This suggests 

that drought recovery rates from these months have similar spatial patterns, and therefore 

the specific initial conditions may not have strong influence over the rate of recovery. 

Further analysis requires a direct comparison of the drought recovery time and rates. 
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Table 4. Rate of drought recovery from each forecast initialization date, as estimated by 

the exponent (n) from equation (69). 

Year April 1
st
 July 1

st
 

2003 0.64 0.57 

2004 0.56 0.58 

2005 0.58 0.59 

2006 0.6 0.57 

2007 0.57 0.6 

2008 0.6 0.58 
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Figure 27 presents a comparison of the relationship between drought recovery 

time and rate for different forecast start dates. In this figure, each combination of drought 

recovery time (left subplot) and rate (right subplot) between two different start dates (66 

unique combinations from the 12 starting dates), for each model grid cell, were plotted. 

For example, the drought recovery time/rate estimated for the each cell starting in April 

1
st
 2003 is the y component, and the drought recovery time/rate estimated for the each 

cell starting in April 1
st
 2004 is the x component, for the first combination in the left 

subplot. Each subsequent combination of start dates is plotted as well, leading to 31,218 

data points from the 66 combinations and 473 model grid cells. By comparing these two 

subplots, it is clear that the drought recovery rate shows a much more consistent pattern 

than drought recovery time. This consistent pattern for recovery rate shows a near linear 

correlation, which suggests that drought recovery rate is largely unaffected by forecast 

initial drought intensity. Alternatively, the drought recovery time is much more scattered, 

suggesting that initial drought intensity strongly affect the length of time to drought 

recovery. Such a finding indicates that the rate of drought recovery is primarily controlled 

by land surface properties, highlighting the importance of the physical setting of the 

region affected by drought, and not just the moisture deficit at a given time. Since the 

drought recovery rate is not significantly changing temporally, as evidenced by Figure 

27, yet there is a large range of drought recovery rates experienced in the basin, as shown 

in Figure 26, it is important to examine the spatial distribution of drought recovery rates 

to determine drought prone regions. 
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The spatial distribution of drought recovery rates is displayed in Figures 28 and 

29. As was expected from Figure 26, these rates are highly variable. In the April 

forecasts, drought recovery rates tend to be faster in the central to northeastern portions 

of the basin, and slower in the southern and western portions of the basin. As for July, the 

fastest drought recovery rates are primarily located in the far eastern portion of the basin, 

and other portions display a generally slow rate of drought recovery. Starting in both 

forecast months, the eastern portions of the basin recover from droughts the most rapidly, 

indicating that this region readily recovers from drought, making this the least drought 

prone region. Alternatively, the southern and western portions of the basin recover from 

drought very slowly, indicating that these regions are prone to extended drought 

conditions. This figure clearly shows that the rate of drought recovery is regional, and 

therefore is strongly affected by the geographical setting. In this study, the spatial 

variability in the simulations is caused by differing land surface parameters, indicating 

that land surface properties (soil types and vegetation cover) strongly affect the ability of 

a region to recover from drought. 



www.manaraa.com

145 

 

 



www.manaraa.com

146 

 

 



www.manaraa.com

147 

 

9 Conclusions 

9.1 Water Supply Forecasting 

 This dissertation examined a number of modeling scenarios in attempts to 

improve the characterization of uncertainty in water supply forecasting. Based on the 

operational ESP framework, the VIC and NWS models were used to generate 

probabilistic seasonal streamflow forecasts. Each model had an open loop case, two DA 

cases (TB only and TB with LST DA), and a model averaging case of all six prior 

scenarios was performed with PF-SBC. DA was implemented to account for initial 

condition uncertainty, and PF-SBC is used to account for model uncertainty. Such an 

experiment is expected to improve the reliability of forecast distributions from ESP, as 

ESP tends to produce overconfident results. 

 A first comparison of the modeling scenarios was provided with the relative 

performance of each during the spin up period. During this time, the NWS models with 

TB only DA provided the best overall probabilistic prediction, highlighting the 

effectiveness of the NWS forecasting system, and the sensitivity of passive microwave 

TB to snowpack states. In addition, the relative accuracy of the models with and without 

DA over the course of the accumulation and ablation season highlights the temporal 

characteristics of TB DA performance. In the accumulation season, DA is more effective 

as the snow tends to be drier, but the open loop models perform better in the ablation 

season as TB becomes less sensitive to SWE. Relative model weights also suggest that 

VIC is more efficient in assimilating LST, which was expected as the VIC model 
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explicitly solves for LST, whereas the SNOW-17 model only estimates average pack 

temperature. 

 Forecast reliability was shown to have a strong spatial component in figures 5 and 

6. The VIC model produced forecasts with lower skill than the NWS models, with the 

exception of the San Juan basin, over the UCRB. Both VIC DA cases were capable of 

improving the forecast reliability in the Green and San Juan basins, suggesting 

improvements in initial conditions, but produced worse forecasts in the Colorado River 

headwaters. While the VIC model performed worse with DA in the headwaters, the NWS 

models improved. This is counterintuitive as the VIC model is expected to be more 

effective at constructing the correct land surface states, but this result is attributed to the 

coarser resolution of the VIC model, with respect to the NWS models in this region. In 

addition, DA in the NWS models provided the least improvement in the headwaters 

region, in comparison to other regions, which highlights the difficulty of utilizing 

remotely sensed information to reconstruct land surface states in regions of thick forest 

cover. This is unfortunate as forest thickness is generally correlated with high 

precipitation quantity, and thus more important from a water supply perspective. Since 

the most densely forested region in a basin will tend to be the most important from a 

water supply perspective, it is imperative that snow observations and DA methods 

become more efficient in these regions, which is a great challenge for the hydrological 

research community. 

 A final conclusion from the water supply forecasting experiment relates to the 

performance of different portions of the forecast distributions. In general, the 
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improvements were stronger in the tails of the distributions than in the central portions, 

with the exception of the PF-SBC case in the Green and San Juan basins. Since DA 

improved the tails of the distribution in nearly all basins/cases, yet did not consistently 

improve total reliability, initial condition uncertainty is shown to have stronger control 

over the reliability of predicting low probability events. Alternatively, PF-SBC improved 

the overall reliability in nearly all basins, suggesting that model error strongly controls 

uncertainty in the forecast distribution mode. Overall, this highlights that both initial 

condition and model error are important factors in seasonal prediction. 

 The presented methodology shows promise for improving the reliability of 

seasonal forecasting, by accounting for all sources of forecast uncertainty, but the results 

from the application here clearly show a need for improvement, as none of the forecasts 

can be considered truly reliable according to the definition in Chapter 6. It is suggested 

that these improvements will come from advancements in land surface DA and increasing 

the number of models to more effectively manage forecast uncertainty. By developing 

more effective DA systems, the proposed framework will create more accurate and 

reliable predictions of initial land surface conditions, which were shown to have 

significant contribution to probabilistic streamflow forecasting. In addition, the inclusion 

of a greater variety of model structures will more effectively manage model errors, thus 

leading to more reliable forecast error quantification. A further advancement in 

quantifying forecast uncertainty may also come from the use of state-parameter 

estimation within the DA framework (DeChant and Moradkhani, 2012), which is 

becoming increasingly efficient (Moradkhani et al., 2012), and therefore more applicable 
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to the spatial extents considered here. Through the application of state-parameter 

estimation, the estimation of parameter uncertainty may be separated from model 

structural uncertainty, leading to a more complete accounting of uncertainty. 

9.2 Probabilistic Verification of Binary Outcomes 

This dissertation used a synthetic experiment to show that conventional methods for 

assessing the reliability of probabilistic hydrological event forecasts are flawed (i.e. BS 

and reliability diagram). These methods provide generally useful metrics for comparing 

probabilistic forecasts, but do not adequately diagnose reliability, nor do they achieve 

optimal use of observed information. Three important drawbacks to these methods are 

highlighted: First, available methods for assessment of reliability are approximate, which 

is evidenced by the dependencies on the uniformity of forecasted probabilities. Second, 

conventional verification methods cannot distinguish reliable from unreliable forecasts in 

a statistically accurate way. Last, the requisite grouping process leads to significant loss 

of information, thus decreasing one’s ability to separate reliable and unreliable forecasts. 

For these reasons, this dissertation suggests the use of a hypothesis test, via the Poisson-

Binomial Distribution, in attempts to reject all unreliable forecasts. In the event that the 

hypothesis of reliability is not rejected for multiple forecasts, the sharpest forecast will be 

preferred, which is a framework followed in the drought forecasting experiment. 

9.3 Drought Forecasting 

Results of from the drought forecasting experiment suggest that the combination 

of DA and multi-modeling (PF-SBC) for seasonal drought forecasting is more reliable 

than other forecast frameworks presented. Both the deterministic metrics and 
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probabilistic metrics agree that the PF-SBC case outperforms all others examined here. 

This result shows the benefits of using DA for land surface state initialization, and the 

combination of multiple models to constrain model uncertainties. By approaching the 

problem of drought forecasting through an increasingly comprehensive uncertainty 

accounting framework, a more accurate and reliable seasonal drought forecasting system 

was achieved. All of the methods for partial accounting of uncertainty were unable to 

satisfy the primary reliability condition (PB-CDF), indicating an incomplete description 

of forecast uncertainty. 

Although the deterministic and probabilistic verification measures agree that the 

PF-SBC method performs the best of all seven forecast methodologies, they provide 

conflicting evidence about the relative performance of the VIC and NWS based forecasts. 

In the deterministic measures, the VIC DA cases appear to outperform their NWS 

counterparts, yet the probabilistic metrics favor DA with the NWS models. Similar to 

previous studies in comparing deterministic and probabilistic verification (DeChant and 

Moradkhani, 2012), it is apparent here that a deterministic metric is not necessarily 

indicative of the probabilistic performance, and therefore both must be examined. In the 

forecasting scenario presented here, there is a large amount of uncertainty for all 

forecasting frameworks, and therefore this study suggests that probabilistic metrics 

should be given higher weight than deterministic measures when comparing model 

performance. This suggestion is made due to the knowledge that the ultimate goal of 

forecasting drought is to aid the management of drought risk. 
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A final conclusion from the drought forecasting experiment is the importance of 

using an exact solution to the probabilistic verification methodology, to attempt to reject 

the hypothesis of reliability. Results from this experiment generally agree with the 

conclusions from the synthetic analysis presented in section 9.2, suggesting that the PB-

CDF improves upon conventional reliability metrics, as it is an exact model of the 

drought verification setting, thus maximizing the information extracted from the 

observation through a single bin analysis. Although the single bin PB-CDF maximizes 

one’s ability to reject unreliable forecasts, it may miss information related to the 

over/underconfidence of the forecast, as it directly measures bias. An examination of the 

reliability diagram suggests that a multiple bin hypothesis test via the PB-CDF may 

provide additional information for the hypothesis test. With such a framework, this study 

was able to show that all forecasting systems were unreliable, but that the PF-SBC case is 

closer to meeting the reliability requirements than all other methods. Unfortunately, the 

drought forecasting system developed in this dissertation is unable to achieve reliability 

based on such analysis. This finding suggests that further advancements to the forecasting 

framework are required, which may come from improved DA, additional models and 

accounting of parameter uncertainty, as suggested in section 9.1. 

9.4 Assessing the Need for a New Drought Index 

This dissertation examined the problems associated with standardized indices, and 

proposes a general framework for advancing drought monitoring. The specific case of 

poorly representing drought in a basin of extreme spatial water storage distribution was 

examined. From this analysis, it was shown that standardized indices may provide 
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misleading analysis of basin-wide drought. In addition, standardized indices were found 

to have obstacles relating to the use of DA methods, which reduces the viability of 

standardized indices as the use of DA methods are becoming increasingly common. 

Beyond the errors related to spatially distributed water storage and DA, it must also be 

noted that standardized indices will be problematic when analyzing sufficiently dynamic 

regions, in terms of both hydrological conditions and socio-environmental demand. 

Based on this information, this dissertation suggests that a movement towards 

increasingly physically-based drought indices is necessary. 

The MSMI was proposed as it is a physically-based drought index. This was shown to 

have some beneficial attributes, but is still incomplete. Primarily, this index is difficult to 

interpret. Without any clear guidelines for differentiating between drought and non-

drought states, this index still relies on comparison of between multiple dates. While this 

index may be difficult to interpret, it may be a reasonable starting point for future 

analysis. If the necessary MSMI required for environmental, agricultural or societal 

demand can be determined for a region, this index can directly describe potential 

deficiencies. This may be as simple as accounting for water requirements to support the 

different types of vegetation cover in a region. In order to move forward, this study 

proposes the MSMI as a reasonable starting point, and suggests that avenues for 

providing context to MSMI values must be pursued, with the most immediately apparent 

avenue being relating MSMI with water demand. 
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9.5 Sensitivity of Droughts to Initial Conditions 

The final experiment of this dissertation examined drought recovery forecasting, 

under the assumption of normal climate following a drought event. Rather than 

comparing the relative influence of initial conditions and forcing, as performed in 

previous studies, the presented results examined the amount of time for the forecast to 

become insensitive to initial conditions, and the rate at which a forecast loses sensitivity 

to the initial conditions. Such an examination is a proxy for estimating lead time, and 

rate, of drought recovery under the assumption that normal climate conditions will occur. 

Through the quantification of drought recovery time and rate, this experiment 

simultaneously provides insight into the expected behavior of the UCRB during the 

recession period of droughts, and the importance of precisely estimating initial conditions 

in forecasts of up to one year. Not surprisingly, this study found that drought recovery 

time was related to drought intensity, with increasing intensity requiring greater recovery 

time. Further, drought recovery time was found to be greater for forecasts originating in 

April than July, but the difference is smaller than anticipated. In some years, the basin-

wide recovery from forecasts originating in April and July were similar, whereas other 

years displayed a difference of up to three months. In general, one would assume that the 

April forecasts would have greater influence on drought recovery time, due to the 

presence of snow water storage, but this is not necessarily the case. 

Results from this dissertation clearly contrast with previous work, which is related to 

the differing perspectives on the importance of drought initial conditions. Due to previous 

studies focusing on lead time at which forcing becomes the dominant factor, in relation to 
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initial conditions, and this study seeking to quantify the lead time at which initial states 

significantly impact the forecast, sensitivity to initial conditions was found to be greater 

here than in other studies. A maximum of six months of sensitivity was generally found 

in previous studies, but results here suggest that a forecast may be sensitive to initial 

conditions beyond one year for select locations, but up to nine months at the basin scale. 

Further, this dissertation shows that forecasts are sensitive to soil moisture at a minimum 

of three months, but previous studies generally suggested a maximum of one to two 

months. Overall these results suggest that initial conditions are important in forecasts of 

greater lead time than previously thought, and therefore estimation of initial conditions 

should be considered for forecasts of extended length. This finding suggests that data 

assimilation systems may have some benefit to forecasts at even a year lead time, 

although the importance of improved initial conditions will be less than forcing 

improvements beyond six months, as indicated by previous studies. 

Drought recovery times estimated in this study should be treated as conservative. The 

results presented are based on initial conditions with large uncertainty. Through the data 

assimilation framework used here, initial conditions remain quite uncertain, and therefore 

approaches climatology faster than precise estimates would. Assuming that data 

assimilation science progresses to decreased initial condition uncertainty, the lead time at 

which a forecast becomes insensitive to initial conditions will increase. This knowledge 

further motivates the use of data assimilation for initializing forecasts of extended length 

as it will reduce the uncertainty in the initial condition, thus increasing the information 

added to the forecast from the initial conditions. 
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A final conclusion from this dissertation is the difference between drought recovery 

time and rate of recovery. Since the drought recovery time is highly dependent on initial 

conditions, this value varies strongly between years and forecast initial date. 

Alternatively, the drought recovery rate appears to be more related to the specific location 

than drought intensity. This is evidenced by the small temporal variance of recovery rates 

for spatially averaged LWS, but large variance for spatially distributed recovery rates 

(see Figure 26). This conclusion gives some insight into the geographic and climatic 

settings which drought is most persistent. In the mountainous northeastern region of the 

UCRB, droughts recover quickly, yet the low lying southern and western regions recover 

slowly from drought. Drought mitigation within the drier regions of the UCRB is 

therefore a much greater challenge than in the mountainous regions. Fortunately, the total 

water storage in this basin is dominated by snow in the mountainous regions, and 

therefore total basin water storage is expected to recover at a rate faster than that of the 

dry interior portions. 
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